[Feature] Return score when doing search in vectorDB (#1060)

Co-authored-by: Deven Patel <deven298@yahoo.com>
This commit is contained in:
Deven Patel
2023-12-29 15:56:12 +05:30
committed by GitHub
parent 19d80914df
commit c0aafd38c9
12 changed files with 72 additions and 28 deletions

View File

@@ -205,7 +205,7 @@ class WeaviateDB(BaseVectorDB):
skip_embedding: bool,
citations: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> Union[List[Tuple[str, str, str]], List[str]]:
) -> Union[List[Tuple[str, Dict]], List[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -255,6 +255,7 @@ class WeaviateDB(BaseVectorDB):
.with_where(weaviate_where_clause)
.with_near_vector({"vector": query_vector})
.with_limit(n_results)
.with_additional(["distance"])
.do()
)
else:
@@ -262,6 +263,7 @@ class WeaviateDB(BaseVectorDB):
self.client.query.get(self.index_name, data_fields)
.with_near_vector({"vector": query_vector})
.with_limit(n_results)
.with_additional(["distance"])
.do()
)
@@ -271,6 +273,8 @@ class WeaviateDB(BaseVectorDB):
context = doc["text"]
if citations:
metadata = doc["metadata"][0]
score = doc["_additional"]["distance"]
metadata["score"] = score
contexts.append((context, metadata))
else:
contexts.append(context)