Add Memgraph integration (#2537)
This commit is contained in:
@@ -59,7 +59,10 @@ class Memory(MemoryBase):
|
||||
self.enable_graph = False
|
||||
|
||||
if self.config.graph_store.config:
|
||||
from mem0.memory.graph_memory import MemoryGraph
|
||||
if self.config.graph_store.provider == "memgraph":
|
||||
from mem0.memory.memgraph_memory import MemoryGraph
|
||||
else:
|
||||
from mem0.memory.graph_memory import MemoryGraph
|
||||
|
||||
self.graph = MemoryGraph(self.config)
|
||||
self.enable_graph = True
|
||||
|
||||
516
mem0/memory/memgraph_memory.py
Normal file
516
mem0/memory/memgraph_memory.py
Normal file
@@ -0,0 +1,516 @@
|
||||
import logging
|
||||
|
||||
from mem0.memory.utils import format_entities
|
||||
|
||||
try:
|
||||
from langchain_memgraph import Memgraph
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"langchain_memgraph is not installed. Please install it using pip install langchain-memgraph"
|
||||
)
|
||||
|
||||
try:
|
||||
from rank_bm25 import BM25Okapi
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"rank_bm25 is not installed. Please install it using pip install rank-bm25"
|
||||
)
|
||||
|
||||
from mem0.graphs.tools import (
|
||||
DELETE_MEMORY_STRUCT_TOOL_GRAPH,
|
||||
DELETE_MEMORY_TOOL_GRAPH,
|
||||
EXTRACT_ENTITIES_STRUCT_TOOL,
|
||||
EXTRACT_ENTITIES_TOOL,
|
||||
RELATIONS_STRUCT_TOOL,
|
||||
RELATIONS_TOOL,
|
||||
)
|
||||
from mem0.graphs.utils import EXTRACT_RELATIONS_PROMPT, get_delete_messages
|
||||
from mem0.utils.factory import EmbedderFactory, LlmFactory
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MemoryGraph:
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.graph = Memgraph(
|
||||
self.config.graph_store.config.url,
|
||||
self.config.graph_store.config.username,
|
||||
self.config.graph_store.config.password,
|
||||
)
|
||||
self.embedding_model = EmbedderFactory.create(
|
||||
self.config.embedder.provider,
|
||||
self.config.embedder.config,
|
||||
{"enable_embeddings": True},
|
||||
)
|
||||
|
||||
self.llm_provider = "openai_structured"
|
||||
if self.config.llm.provider:
|
||||
self.llm_provider = self.config.llm.provider
|
||||
if self.config.graph_store.llm:
|
||||
self.llm_provider = self.config.graph_store.llm.provider
|
||||
|
||||
self.llm = LlmFactory.create(self.llm_provider, self.config.llm.config)
|
||||
self.user_id = None
|
||||
self.threshold = 0.7
|
||||
|
||||
# Setup Memgraph:
|
||||
# 1. Create vector index (created Entity label on all nodes)
|
||||
# 2. Create label property index for performance optimizations
|
||||
embedding_dims = self.config.embedder.config["embedding_dims"]
|
||||
create_vector_index_query = f"CREATE VECTOR INDEX memzero ON :Entity(embedding) WITH CONFIG {{'dimension': {embedding_dims}, 'capacity': 1000, 'metric': 'cos'}};"
|
||||
self.graph.query(create_vector_index_query, params={})
|
||||
create_label_prop_index_query = f"CREATE INDEX ON :Entity(user_id);"
|
||||
self.graph.query(create_label_prop_index_query, params={})
|
||||
create_label_index_query = f"CREATE INDEX ON :Entity;"
|
||||
self.graph.query(create_label_index_query, params={})
|
||||
|
||||
def add(self, data, filters):
|
||||
"""
|
||||
Adds data to the graph.
|
||||
|
||||
Args:
|
||||
data (str): The data to add to the graph.
|
||||
filters (dict): A dictionary containing filters to be applied during the addition.
|
||||
"""
|
||||
entity_type_map = self._retrieve_nodes_from_data(data, filters)
|
||||
to_be_added = self._establish_nodes_relations_from_data(
|
||||
data, filters, entity_type_map
|
||||
)
|
||||
search_output = self._search_graph_db(
|
||||
node_list=list(entity_type_map.keys()), filters=filters
|
||||
)
|
||||
to_be_deleted = self._get_delete_entities_from_search_output(
|
||||
search_output, data, filters
|
||||
)
|
||||
|
||||
# TODO: Batch queries with APOC plugin
|
||||
# TODO: Add more filter support
|
||||
deleted_entities = self._delete_entities(to_be_deleted, filters["user_id"])
|
||||
added_entities = self._add_entities(
|
||||
to_be_added, filters["user_id"], entity_type_map
|
||||
)
|
||||
|
||||
return {"deleted_entities": deleted_entities, "added_entities": added_entities}
|
||||
|
||||
def search(self, query, filters, limit=100):
|
||||
"""
|
||||
Search for memories and related graph data.
|
||||
|
||||
Args:
|
||||
query (str): Query to search for.
|
||||
filters (dict): A dictionary containing filters to be applied during the search.
|
||||
limit (int): The maximum number of nodes and relationships to retrieve. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing:
|
||||
- "contexts": List of search results from the base data store.
|
||||
- "entities": List of related graph data based on the query.
|
||||
"""
|
||||
entity_type_map = self._retrieve_nodes_from_data(query, filters)
|
||||
search_output = self._search_graph_db(
|
||||
node_list=list(entity_type_map.keys()), filters=filters
|
||||
)
|
||||
|
||||
if not search_output:
|
||||
return []
|
||||
|
||||
search_outputs_sequence = [
|
||||
[item["source"], item["relationship"], item["destination"]]
|
||||
for item in search_output
|
||||
]
|
||||
bm25 = BM25Okapi(search_outputs_sequence)
|
||||
|
||||
tokenized_query = query.split(" ")
|
||||
reranked_results = bm25.get_top_n(tokenized_query, search_outputs_sequence, n=5)
|
||||
|
||||
search_results = []
|
||||
for item in reranked_results:
|
||||
search_results.append(
|
||||
{"source": item[0], "relationship": item[1], "destination": item[2]}
|
||||
)
|
||||
|
||||
logger.info(f"Returned {len(search_results)} search results")
|
||||
|
||||
return search_results
|
||||
|
||||
def delete_all(self, filters):
|
||||
cypher = """
|
||||
MATCH (n {user_id: $user_id})
|
||||
DETACH DELETE n
|
||||
"""
|
||||
params = {"user_id": filters["user_id"]}
|
||||
self.graph.query(cypher, params=params)
|
||||
|
||||
def get_all(self, filters, limit=100):
|
||||
"""
|
||||
Retrieves all nodes and relationships from the graph database based on optional filtering criteria.
|
||||
|
||||
Args:
|
||||
filters (dict): A dictionary containing filters to be applied during the retrieval.
|
||||
limit (int): The maximum number of nodes and relationships to retrieve. Defaults to 100.
|
||||
Returns:
|
||||
list: A list of dictionaries, each containing:
|
||||
- 'contexts': The base data store response for each memory.
|
||||
- 'entities': A list of strings representing the nodes and relationships
|
||||
"""
|
||||
|
||||
# return all nodes and relationships
|
||||
query = """
|
||||
MATCH (n:Entity {user_id: $user_id})-[r]->(m:Entity {user_id: $user_id})
|
||||
RETURN n.name AS source, type(r) AS relationship, m.name AS target
|
||||
LIMIT $limit
|
||||
"""
|
||||
results = self.graph.query(
|
||||
query, params={"user_id": filters["user_id"], "limit": limit}
|
||||
)
|
||||
|
||||
final_results = []
|
||||
for result in results:
|
||||
final_results.append(
|
||||
{
|
||||
"source": result["source"],
|
||||
"relationship": result["relationship"],
|
||||
"target": result["target"],
|
||||
}
|
||||
)
|
||||
|
||||
logger.info(f"Retrieved {len(final_results)} relationships")
|
||||
|
||||
return final_results
|
||||
|
||||
def _retrieve_nodes_from_data(self, data, filters):
|
||||
"""Extracts all the entities mentioned in the query."""
|
||||
_tools = [EXTRACT_ENTITIES_TOOL]
|
||||
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
|
||||
_tools = [EXTRACT_ENTITIES_STRUCT_TOOL]
|
||||
search_results = self.llm.generate_response(
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": f"You are a smart assistant who understands entities and their types in a given text. If user message contains self reference such as 'I', 'me', 'my' etc. then use {filters['user_id']} as the source entity. Extract all the entities from the text. ***DO NOT*** answer the question itself if the given text is a question.",
|
||||
},
|
||||
{"role": "user", "content": data},
|
||||
],
|
||||
tools=_tools,
|
||||
)
|
||||
|
||||
entity_type_map = {}
|
||||
|
||||
try:
|
||||
for tool_call in search_results["tool_calls"]:
|
||||
if tool_call["name"] != "extract_entities":
|
||||
continue
|
||||
for item in tool_call["arguments"]["entities"]:
|
||||
entity_type_map[item["entity"]] = item["entity_type"]
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
f"Error in search tool: {e}, llm_provider={self.llm_provider}, search_results={search_results}"
|
||||
)
|
||||
|
||||
entity_type_map = {
|
||||
k.lower().replace(" ", "_"): v.lower().replace(" ", "_")
|
||||
for k, v in entity_type_map.items()
|
||||
}
|
||||
logger.debug(
|
||||
f"Entity type map: {entity_type_map}\n search_results={search_results}"
|
||||
)
|
||||
return entity_type_map
|
||||
|
||||
def _establish_nodes_relations_from_data(self, data, filters, entity_type_map):
|
||||
"""Eshtablish relations among the extracted nodes."""
|
||||
if self.config.graph_store.custom_prompt:
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": EXTRACT_RELATIONS_PROMPT.replace(
|
||||
"USER_ID", filters["user_id"]
|
||||
).replace(
|
||||
"CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}"
|
||||
),
|
||||
},
|
||||
{"role": "user", "content": data},
|
||||
]
|
||||
else:
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": EXTRACT_RELATIONS_PROMPT.replace(
|
||||
"USER_ID", filters["user_id"]
|
||||
),
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"List of entities: {list(entity_type_map.keys())}. \n\nText: {data}",
|
||||
},
|
||||
]
|
||||
|
||||
_tools = [RELATIONS_TOOL]
|
||||
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
|
||||
_tools = [RELATIONS_STRUCT_TOOL]
|
||||
|
||||
extracted_entities = self.llm.generate_response(
|
||||
messages=messages,
|
||||
tools=_tools,
|
||||
)
|
||||
|
||||
entities = []
|
||||
if extracted_entities["tool_calls"]:
|
||||
entities = extracted_entities["tool_calls"][0]["arguments"]["entities"]
|
||||
|
||||
entities = self._remove_spaces_from_entities(entities)
|
||||
logger.debug(f"Extracted entities: {entities}")
|
||||
return entities
|
||||
|
||||
def _search_graph_db(self, node_list, filters, limit=100):
|
||||
"""Search similar nodes among and their respective incoming and outgoing relations."""
|
||||
result_relations = []
|
||||
|
||||
for node in node_list:
|
||||
n_embedding = self.embedding_model.embed(node)
|
||||
|
||||
cypher_query = f"""
|
||||
MATCH (n:Entity {{user_id: $user_id}})-[r]->(m:Entity)
|
||||
WHERE n.embedding IS NOT NULL
|
||||
WITH collect(n) AS nodes1, collect(m) AS nodes2, r
|
||||
CALL node_similarity.cosine_pairwise("embedding", nodes1, nodes2)
|
||||
YIELD node1, node2, similarity
|
||||
WITH node1, node2, similarity, r
|
||||
WHERE similarity >= $threshold
|
||||
RETURN node1.user_id AS source, id(node1) AS source_id, type(r) AS relationship, id(r) AS relation_id, node2.user_id AS destination, id(node2) AS destination_id, similarity
|
||||
UNION
|
||||
MATCH (n:Entity {{user_id: $user_id}})<-[r]-(m:Entity)
|
||||
WHERE n.embedding IS NOT NULL
|
||||
WITH collect(n) AS nodes1, collect(m) AS nodes2, r
|
||||
CALL node_similarity.cosine_pairwise("embedding", nodes1, nodes2)
|
||||
YIELD node1, node2, similarity
|
||||
WITH node1, node2, similarity, r
|
||||
WHERE similarity >= $threshold
|
||||
RETURN node2.name AS source, id(node2) AS source_id, type(r) AS relationship, id(r) AS relation_id, node1.name AS destination, id(node1) AS destination_id, similarity
|
||||
ORDER BY similarity DESC
|
||||
LIMIT $limit;
|
||||
"""
|
||||
params = {
|
||||
"n_embedding": n_embedding,
|
||||
"threshold": self.threshold,
|
||||
"user_id": filters["user_id"],
|
||||
"limit": limit,
|
||||
}
|
||||
ans = self.graph.query(cypher_query, params=params)
|
||||
result_relations.extend(ans)
|
||||
|
||||
return result_relations
|
||||
|
||||
def _get_delete_entities_from_search_output(self, search_output, data, filters):
|
||||
"""Get the entities to be deleted from the search output."""
|
||||
search_output_string = format_entities(search_output)
|
||||
system_prompt, user_prompt = get_delete_messages(
|
||||
search_output_string, data, filters["user_id"]
|
||||
)
|
||||
|
||||
_tools = [DELETE_MEMORY_TOOL_GRAPH]
|
||||
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
|
||||
_tools = [
|
||||
DELETE_MEMORY_STRUCT_TOOL_GRAPH,
|
||||
]
|
||||
|
||||
memory_updates = self.llm.generate_response(
|
||||
messages=[
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt},
|
||||
],
|
||||
tools=_tools,
|
||||
)
|
||||
to_be_deleted = []
|
||||
for item in memory_updates["tool_calls"]:
|
||||
if item["name"] == "delete_graph_memory":
|
||||
to_be_deleted.append(item["arguments"])
|
||||
# in case if it is not in the correct format
|
||||
to_be_deleted = self._remove_spaces_from_entities(to_be_deleted)
|
||||
logger.debug(f"Deleted relationships: {to_be_deleted}")
|
||||
return to_be_deleted
|
||||
|
||||
def _delete_entities(self, to_be_deleted, user_id):
|
||||
"""Delete the entities from the graph."""
|
||||
results = []
|
||||
for item in to_be_deleted:
|
||||
source = item["source"]
|
||||
destination = item["destination"]
|
||||
relationship = item["relationship"]
|
||||
|
||||
# Delete the specific relationship between nodes
|
||||
cypher = f"""
|
||||
MATCH (n:Entity {{name: $source_name, user_id: $user_id}})
|
||||
-[r:{relationship}]->
|
||||
(m {{name: $dest_name, user_id: $user_id}})
|
||||
DELETE r
|
||||
RETURN
|
||||
n.name AS source,
|
||||
m.name AS target,
|
||||
type(r) AS relationship
|
||||
"""
|
||||
params = {
|
||||
"source_name": source,
|
||||
"dest_name": destination,
|
||||
"user_id": user_id,
|
||||
}
|
||||
result = self.graph.query(cypher, params=params)
|
||||
results.append(result)
|
||||
return results
|
||||
|
||||
# added Entity label to all nodes for vector search to work
|
||||
def _add_entities(self, to_be_added, user_id, entity_type_map):
|
||||
"""Add the new entities to the graph. Merge the nodes if they already exist."""
|
||||
results = []
|
||||
for item in to_be_added:
|
||||
# entities
|
||||
source = item["source"]
|
||||
destination = item["destination"]
|
||||
relationship = item["relationship"]
|
||||
|
||||
# types
|
||||
source_type = entity_type_map.get(source, "unknown")
|
||||
destination_type = entity_type_map.get(destination, "unknown")
|
||||
|
||||
# embeddings
|
||||
source_embedding = self.embedding_model.embed(source)
|
||||
dest_embedding = self.embedding_model.embed(destination)
|
||||
|
||||
# search for the nodes with the closest embeddings; this is basically
|
||||
# comparison of one embedding to all embeddings in a graph -> vector
|
||||
# search with cosine similarity metric
|
||||
source_node_search_result = self._search_source_node(
|
||||
source_embedding, user_id, threshold=0.9
|
||||
)
|
||||
destination_node_search_result = self._search_destination_node(
|
||||
dest_embedding, user_id, threshold=0.9
|
||||
)
|
||||
|
||||
# TODO: Create a cypher query and common params for all the cases
|
||||
if not destination_node_search_result and source_node_search_result:
|
||||
cypher = f"""
|
||||
MATCH (source:Entity)
|
||||
WHERE id(source) = $source_id
|
||||
MERGE (destination:{destination_type}:Entity {{name: $destination_name, user_id: $user_id}})
|
||||
ON CREATE SET
|
||||
destination.created = timestamp(),
|
||||
destination.embedding = $destination_embedding,
|
||||
destination:Entity
|
||||
MERGE (source)-[r:{relationship}]->(destination)
|
||||
ON CREATE SET
|
||||
r.created = timestamp()
|
||||
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
|
||||
"""
|
||||
|
||||
params = {
|
||||
"source_id": source_node_search_result[0]["id(source_candidate)"],
|
||||
"destination_name": destination,
|
||||
"destination_embedding": dest_embedding,
|
||||
"user_id": user_id,
|
||||
}
|
||||
elif destination_node_search_result and not source_node_search_result:
|
||||
cypher = f"""
|
||||
MATCH (destination:Entity)
|
||||
WHERE id(destination) = $destination_id
|
||||
MERGE (source:{source_type}:Entity {{name: $source_name, user_id: $user_id}})
|
||||
ON CREATE SET
|
||||
source.created = timestamp(),
|
||||
source.embedding = $source_embedding,
|
||||
source:Entity
|
||||
MERGE (source)-[r:{relationship}]->(destination)
|
||||
ON CREATE SET
|
||||
r.created = timestamp()
|
||||
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
|
||||
"""
|
||||
|
||||
params = {
|
||||
"destination_id": destination_node_search_result[0][
|
||||
"id(destination_candidate)"
|
||||
],
|
||||
"source_name": source,
|
||||
"source_embedding": source_embedding,
|
||||
"user_id": user_id,
|
||||
}
|
||||
elif source_node_search_result and destination_node_search_result:
|
||||
cypher = f"""
|
||||
MATCH (source:Entity)
|
||||
WHERE id(source) = $source_id
|
||||
MATCH (destination:Entity)
|
||||
WHERE id(destination) = $destination_id
|
||||
MERGE (source)-[r:{relationship}]->(destination)
|
||||
ON CREATE SET
|
||||
r.created_at = timestamp(),
|
||||
r.updated_at = timestamp()
|
||||
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
|
||||
"""
|
||||
params = {
|
||||
"source_id": source_node_search_result[0]["id(source_candidate)"],
|
||||
"destination_id": destination_node_search_result[0][
|
||||
"id(destination_candidate)"
|
||||
],
|
||||
"user_id": user_id,
|
||||
}
|
||||
else:
|
||||
cypher = f"""
|
||||
MERGE (n:{source_type}:Entity {{name: $source_name, user_id: $user_id}})
|
||||
ON CREATE SET n.created = timestamp(), n.embedding = $source_embedding, n:Entity
|
||||
ON MATCH SET n.embedding = $source_embedding
|
||||
MERGE (m:{destination_type}:Entity {{name: $dest_name, user_id: $user_id}})
|
||||
ON CREATE SET m.created = timestamp(), m.embedding = $dest_embedding, m:Entity
|
||||
ON MATCH SET m.embedding = $dest_embedding
|
||||
MERGE (n)-[rel:{relationship}]->(m)
|
||||
ON CREATE SET rel.created = timestamp()
|
||||
RETURN n.name AS source, type(rel) AS relationship, m.name AS target
|
||||
"""
|
||||
params = {
|
||||
"source_name": source,
|
||||
"dest_name": destination,
|
||||
"source_embedding": source_embedding,
|
||||
"dest_embedding": dest_embedding,
|
||||
"user_id": user_id,
|
||||
}
|
||||
result = self.graph.query(cypher, params=params)
|
||||
results.append(result)
|
||||
return results
|
||||
|
||||
def _remove_spaces_from_entities(self, entity_list):
|
||||
for item in entity_list:
|
||||
item["source"] = item["source"].lower().replace(" ", "_")
|
||||
item["relationship"] = item["relationship"].lower().replace(" ", "_")
|
||||
item["destination"] = item["destination"].lower().replace(" ", "_")
|
||||
return entity_list
|
||||
|
||||
def _search_source_node(self, source_embedding, user_id, threshold=0.9):
|
||||
cypher = f"""
|
||||
CALL vector_search.search("memzero", 1, $source_embedding)
|
||||
YIELD distance, node, similarity
|
||||
WITH node AS source_candidate, similarity
|
||||
WHERE source_candidate.user_id = $user_id AND similarity >= $threshold
|
||||
RETURN id(source_candidate);
|
||||
"""
|
||||
|
||||
params = {
|
||||
"source_embedding": source_embedding,
|
||||
"user_id": user_id,
|
||||
"threshold": threshold,
|
||||
}
|
||||
|
||||
result = self.graph.query(cypher, params=params)
|
||||
return result
|
||||
|
||||
def _search_destination_node(self, destination_embedding, user_id, threshold=0.9):
|
||||
cypher = f"""
|
||||
CALL vector_search.search("memzero", 1, $destination_embedding)
|
||||
YIELD distance, node, similarity
|
||||
WITH node AS destination_candidate, similarity
|
||||
WHERE node.user_id = $user_id AND similarity >= $threshold
|
||||
RETURN id(destination_candidate);
|
||||
"""
|
||||
params = {
|
||||
"destination_embedding": destination_embedding,
|
||||
"user_id": user_id,
|
||||
"threshold": threshold,
|
||||
}
|
||||
|
||||
result = self.graph.query(cypher, params=params)
|
||||
return result
|
||||
Reference in New Issue
Block a user