Sets up metadata db for every llm class (#1401)
This commit is contained in:
@@ -20,7 +20,7 @@ from embedchain.cache import (
|
||||
)
|
||||
from embedchain.client import Client
|
||||
from embedchain.config import AppConfig, CacheConfig, ChunkerConfig, Mem0Config
|
||||
from embedchain.core.db.database import get_session, init_db, setup_engine
|
||||
from embedchain.core.db.database import get_session
|
||||
from embedchain.core.db.models import DataSource
|
||||
from embedchain.embedchain import EmbedChain
|
||||
from embedchain.embedder.base import BaseEmbedder
|
||||
@@ -89,10 +89,6 @@ class App(EmbedChain):
|
||||
if name and config:
|
||||
raise Exception("Cannot provide both name and config. Please provide only one of them.")
|
||||
|
||||
# Initialize the metadata db for the app
|
||||
setup_engine(database_uri=os.environ.get("EMBEDCHAIN_DB_URI"))
|
||||
init_db()
|
||||
|
||||
self.auto_deploy = auto_deploy
|
||||
# Store the dict config as an attribute to be able to send it
|
||||
self.config_data = config_data if (config_data and validate_config(config_data)) else None
|
||||
@@ -389,10 +385,6 @@ class App(EmbedChain):
|
||||
vector_db = VectorDBFactory.create(vector_db_provider, vector_db_config_data.get("config", {}))
|
||||
|
||||
if llm_config_data:
|
||||
# Initialize the metadata db for the app here since llmfactory needs it for initialization of
|
||||
# the llm memory
|
||||
setup_engine(database_uri=os.environ.get("EMBEDCHAIN_DB_URI"))
|
||||
init_db()
|
||||
llm_provider = llm_config_data.get("provider", "openai")
|
||||
llm = LlmFactory.create(llm_provider, llm_config_data.get("config", {}))
|
||||
else:
|
||||
|
||||
Reference in New Issue
Block a user