[Docs] Add docs for Azure OpenAI provider (#804)

This commit is contained in:
Deshraj Yadav
2023-10-16 13:31:56 -07:00
committed by GitHub
parent 636bc0a99d
commit adf50f1e81
7 changed files with 299 additions and 2 deletions

View File

@@ -8,6 +8,7 @@ Embedchain supports several embedding models from the following providers:
<CardGroup cols={4}>
<Card title="OpenAI" href="#openai"></Card>
<Card title="Azure OpenAI" href="#azure-openai"></Card>
<Card title="GPT4All" href="#gpt4all"></Card>
<Card title="Hugging Face" href="#hugging-face"></Card>
<Card title="Vertex AI" href="#vertex-ai"></Card>
@@ -43,6 +44,45 @@ embedder:
</CodeGroup>
## Azure OpenAI
To use Azure OpenAI embedding model, you have to set some of the azure openai related environment variables as given in the code block below:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://xxx.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "xxx"
os.environ["OPENAI_API_VERSION"] = "xxx"
app = App.from_config(yaml_path="config.yaml")
```
```yaml config.yaml
llm:
provider: azure_openai
model: gpt-35-turbo
config:
deployment_name: your_llm_deployment_name
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: azure_openai
config:
model: text-embedding-ada-002
deployment_name: you_embedding_model_deployment_name
```
</CodeGroup>
You can find the list of models and deployment name on the [Azure OpenAI Platform](https://oai.azure.com/portal).
## GPT4ALL
GPT4All supports generating high quality embeddings of arbitrary length documents of text using a CPU optimized contrastively trained Sentence Transformer.

View File

@@ -65,7 +65,42 @@ llm:
## Azure OpenAI
_Coming soon_
To use Azure OpenAI model, you have to set some of the azure openai related environment variables as given in the code block below:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://xxx.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "xxx"
os.environ["OPENAI_API_VERSION"] = "xxx"
app = App.from_config(yaml_path="config.yaml")
```
```yaml config.yaml
llm:
provider: azure_openai
model: gpt-35-turbo
config:
deployment_name: your_llm_deployment_name
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: azure_openai
config:
model: text-embedding-ada-002
deployment_name: you_embedding_model_deployment_name
```
</CodeGroup>
You can find the list of models and deployment name on the [Azure OpenAI Platform](https://oai.azure.com/portal).
## Anthropic

View File

@@ -119,11 +119,17 @@ Install related dependencies using the following command:
pip install --upgrade 'embedchain[milvus]'
```
Set the Zilliz environment variables `ZILLIZ_CLOUD_URI` and `ZILLIZ_CLOUD_TOKEN` which you can find it on their [cloud platform](https://cloud.zilliz.com/).
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ['ZILLIZ_CLOUD_URI'] = 'https://xxx.zillizcloud.com'
os.environ['ZILLIZ_CLOUD_TOKEN'] = 'xxx'
# load zilliz configuration from yaml file
app = App.from_config(yaml_path="config.yaml")
```
@@ -147,8 +153,16 @@ _Coming soon_
## Pinecone
Install pinecone related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[pinecone]'
```
In order to use Pinecone as vector database, set the environment variables `PINECONE_API_KEY` and `PINECONE_ENV` which you can find on [Pinecone dashboard](https://app.pinecone.io/).
<CodeGroup>
```python main.py
from embedchain import App
@@ -165,6 +179,8 @@ vectordb:
collection_name: my-pinecone-index
```
</CodeGroup>
## Qdrant
_Coming soon_