feat: add new custom app (#313)

This commit is contained in:
cachho
2023-07-18 21:24:23 +02:00
committed by GitHub
parent 96143ac496
commit adb7206639
24 changed files with 455 additions and 147 deletions

View File

@@ -27,7 +27,7 @@ class App(EmbedChain):
messages = []
messages.append({"role": "user", "content": prompt})
response = openai.ChatCompletion.create(
model=config.model,
model=config.model or "gpt-3.5-turbo-0613",
messages=messages,
temperature=config.temperature,
max_tokens=config.max_tokens,

View File

@@ -0,0 +1,128 @@
import logging
from typing import Iterable, List, Union
from langchain.schema import BaseMessage
from embedchain.config import ChatConfig, CustomAppConfig, OpenSourceAppConfig
from embedchain.embedchain import EmbedChain
from embedchain.models import Providers
class CustomApp(EmbedChain):
"""
The custom EmbedChain app.
Has two functions: add and query.
adds(data_type, url): adds the data from the given URL to the vector db.
query(query): finds answer to the given query using vector database and LLM.
dry_run(query): test your prompt without consuming tokens.
"""
def __init__(self, config: CustomAppConfig = None):
"""
:param config: Optional. `CustomAppConfig` instance to load as configuration.
:raises ValueError: Config must be provided for custom app
"""
if config is None:
raise ValueError("Config must be provided for custom app")
self.provider = config.provider
if config.provider == Providers.GPT4ALL:
from embedchain import OpenSourceApp
# Because these models run locally, they should have an instance running when the custom app is created
self.open_source_app = OpenSourceApp(config=config.open_source_app_config)
super().__init__(config)
def set_llm_model(self, provider: Providers):
self.provider = provider
if provider == Providers.GPT4ALL:
raise ValueError(
"GPT4ALL needs to be instantiated with the model known, please create a new app instance instead"
)
def get_llm_model_answer(self, prompt, config: ChatConfig):
# TODO: Quitting the streaming response here for now.
# Idea: https://gist.github.com/jvelezmagic/03ddf4c452d011aae36b2a0f73d72f68
if config.stream:
raise NotImplementedError(
"Streaming responses have not been implemented for this model yet. Please disable."
)
try:
if self.provider == Providers.OPENAI:
return CustomApp._get_openai_answer(prompt, config)
if self.provider == Providers.ANTHROPHIC:
return CustomApp._get_athrophic_answer(prompt, config)
if self.provider == Providers.VERTEX_AI:
return CustomApp._get_vertex_answer(prompt, config)
if self.provider == Providers.GPT4ALL:
return self.open_source_app._get_gpt4all_answer(prompt, config)
except ImportError as e:
raise ImportError(e.msg) from None
@staticmethod
def _get_openai_answer(prompt: str, config: ChatConfig) -> str:
from langchain.chat_models import ChatOpenAI
logging.info(vars(config))
chat = ChatOpenAI(
temperature=config.temperature,
model=config.model or "gpt-3.5-turbo",
max_tokens=config.max_tokens,
streaming=config.stream,
)
if config.top_p and config.top_p != 1:
logging.warning("Config option `top_p` is not supported by this model.")
messages = CustomApp._get_messages(prompt)
return chat(messages).content
@staticmethod
def _get_athrophic_answer(prompt: str, config: ChatConfig) -> str:
from langchain.chat_models import ChatAnthropic
chat = ChatAnthropic(temperature=config.temperature, model=config.model)
if config.max_tokens and config.max_tokens != 1000:
logging.warning("Config option `max_tokens` is not supported by this model.")
messages = CustomApp._get_messages(prompt)
return chat(messages).content
@staticmethod
def _get_vertex_answer(prompt: str, config: ChatConfig) -> str:
from langchain.chat_models import ChatVertexAI
chat = ChatVertexAI(temperature=config.temperature, model=config.model, max_output_tokens=config.max_tokens)
if config.top_p and config.top_p != 1:
logging.warning("Config option `top_p` is not supported by this model.")
messages = CustomApp._get_messages(prompt)
return chat(messages).content
@staticmethod
def _get_messages(prompt: str) -> List[BaseMessage]:
from langchain.schema import HumanMessage, SystemMessage
return [SystemMessage(content="You are a helpful assistant."), HumanMessage(content=prompt)]
def _stream_llm_model_response(self, response):
"""
This is a generator for streaming response from the OpenAI completions API
"""
for line in response:
chunk = line["choices"][0].get("delta", {}).get("content", "")
yield chunk

View File

@@ -1,4 +1,5 @@
import logging
from typing import Iterable, List, Union
from embedchain.config import ChatConfig, OpenSourceAppConfig
from embedchain.embedchain import EmbedChain
@@ -26,14 +27,39 @@ class OpenSourceApp(EmbedChain):
if not config:
config = OpenSourceAppConfig()
if not config.model:
raise ValueError("OpenSourceApp needs a model to be instantiated. Maybe you passed the wrong config type?")
self.instance = OpenSourceApp._get_instance(config.model)
logging.info("Successfully loaded open source embedding model.")
super().__init__(config)
def get_llm_model_answer(self, prompt, config: ChatConfig):
from gpt4all import GPT4All
return self._get_gpt4all_answer(prompt=prompt, config=config)
global gpt4all_model
if gpt4all_model is None:
gpt4all_model = GPT4All("orca-mini-3b.ggmlv3.q4_0.bin")
response = gpt4all_model.generate(prompt=prompt, streaming=config.stream)
@staticmethod
def _get_instance(model):
try:
from gpt4all import GPT4All
except ModuleNotFoundError:
raise ValueError(
"The GPT4All python package is not installed. Please install it with `pip install GPT4All`"
) from None
return GPT4All(model)
def _get_gpt4all_answer(self, prompt: str, config: ChatConfig) -> Union[str, Iterable]:
if config.model and config.model != self.config.model:
raise RuntimeError(
"OpenSourceApp does not support switching models at runtime. Please create a new app instance."
)
response = self.instance.generate(
prompt=prompt,
streaming=config.stream,
top_p=config.top_p,
max_tokens=config.max_tokens,
temp=config.temperature,
)
return response

View File

@@ -4,8 +4,7 @@ from embedchain.apps.App import App
from embedchain.apps.OpenSourceApp import OpenSourceApp
from embedchain.config import ChatConfig, QueryConfig
from embedchain.config.apps.BaseAppConfig import BaseAppConfig
from embedchain.config.QueryConfig import (DEFAULT_PROMPT,
DEFAULT_PROMPT_WITH_HISTORY)
from embedchain.config.QueryConfig import DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY
class EmbedChainPersonApp: