Add support for supplying custom db params (#1276)
This commit is contained in:
@@ -15,7 +15,7 @@ from embedchain.cache import (Config, ExactMatchEvaluation,
|
||||
gptcache_data_manager, gptcache_pre_function)
|
||||
from embedchain.client import Client
|
||||
from embedchain.config import AppConfig, CacheConfig, ChunkerConfig
|
||||
from embedchain.core.db.database import get_session
|
||||
from embedchain.core.db.database import get_session, init_db, setup_engine
|
||||
from embedchain.core.db.models import DataSource
|
||||
from embedchain.embedchain import EmbedChain
|
||||
from embedchain.embedder.base import BaseEmbedder
|
||||
@@ -86,15 +86,18 @@ class App(EmbedChain):
|
||||
|
||||
logging.basicConfig(level=log_level, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
# Initialize the metadata db for the app
|
||||
setup_engine(database_uri=os.environ.get("EMBEDCHAIN_DB_URI"))
|
||||
init_db()
|
||||
|
||||
self.auto_deploy = auto_deploy
|
||||
# Store the dict config as an attribute to be able to send it
|
||||
self.config_data = config_data if (config_data and validate_config(config_data)) else None
|
||||
self.client = None
|
||||
# pipeline_id from the backend
|
||||
self.id = None
|
||||
self.chunker = None
|
||||
if chunker:
|
||||
self.chunker = ChunkerConfig(**chunker)
|
||||
self.chunker = ChunkerConfig(**chunker) if chunker else None
|
||||
self.cache_config = cache_config
|
||||
|
||||
self.config = config or AppConfig()
|
||||
@@ -321,18 +324,18 @@ class App(EmbedChain):
|
||||
yaml_path: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Instantiate a Pipeline object from a configuration.
|
||||
Instantiate a App object from a configuration.
|
||||
|
||||
:param config_path: Path to the YAML or JSON configuration file.
|
||||
:type config_path: Optional[str]
|
||||
:param config: A dictionary containing the configuration.
|
||||
:type config: Optional[dict[str, Any]]
|
||||
:param auto_deploy: Whether to deploy the pipeline automatically, defaults to False
|
||||
:param auto_deploy: Whether to deploy the app automatically, defaults to False
|
||||
:type auto_deploy: bool, optional
|
||||
:param yaml_path: (Deprecated) Path to the YAML configuration file. Use config_path instead.
|
||||
:type yaml_path: Optional[str]
|
||||
:return: An instance of the Pipeline class.
|
||||
:rtype: Pipeline
|
||||
:return: An instance of the App class.
|
||||
:rtype: App
|
||||
"""
|
||||
# Backward compatibility for yaml_path
|
||||
if yaml_path and not config_path:
|
||||
@@ -366,7 +369,7 @@ class App(EmbedChain):
|
||||
raise Exception(f"Error occurred while validating the config. Error: {str(e)}")
|
||||
|
||||
app_config_data = config_data.get("app", {}).get("config", {})
|
||||
db_config_data = config_data.get("vectordb", {})
|
||||
vector_db_config_data = config_data.get("vectordb", {})
|
||||
embedding_model_config_data = config_data.get("embedding_model", config_data.get("embedder", {}))
|
||||
llm_config_data = config_data.get("llm", {})
|
||||
chunker_config_data = config_data.get("chunker", {})
|
||||
@@ -374,8 +377,8 @@ class App(EmbedChain):
|
||||
|
||||
app_config = AppConfig(**app_config_data)
|
||||
|
||||
db_provider = db_config_data.get("provider", "chroma")
|
||||
db = VectorDBFactory.create(db_provider, db_config_data.get("config", {}))
|
||||
vector_db_provider = vector_db_config_data.get("provider", "chroma")
|
||||
vector_db = VectorDBFactory.create(vector_db_provider, vector_db_config_data.get("config", {}))
|
||||
|
||||
if llm_config_data:
|
||||
llm_provider = llm_config_data.get("provider", "openai")
|
||||
@@ -396,7 +399,7 @@ class App(EmbedChain):
|
||||
return cls(
|
||||
config=app_config,
|
||||
llm=llm,
|
||||
db=db,
|
||||
db=vector_db,
|
||||
embedding_model=embedding_model,
|
||||
config_data=config_data,
|
||||
auto_deploy=auto_deploy,
|
||||
|
||||
Reference in New Issue
Block a user