[Refactor] Converge Pipeline and App classes (#1021)
Co-authored-by: Deven Patel <deven298@yahoo.com>
This commit is contained in:
@@ -25,7 +25,7 @@ Once you have obtained the key, you can use it like this:
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import Pipeline as App
|
||||
from embedchain import App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
@@ -52,7 +52,7 @@ To use Google AI embedding function, you have to set the `GOOGLE_API_KEY` enviro
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import Pipeline as App
|
||||
from embedchain import App
|
||||
|
||||
os.environ["GOOGLE_API_KEY"] = "xxx"
|
||||
|
||||
@@ -81,7 +81,7 @@ To use Azure OpenAI embedding model, you have to set some of the azure openai re
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import Pipeline as App
|
||||
from embedchain import App
|
||||
|
||||
os.environ["OPENAI_API_TYPE"] = "azure"
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://xxx.openai.azure.com/"
|
||||
@@ -119,7 +119,7 @@ GPT4All supports generating high quality embeddings of arbitrary length document
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import Pipeline as App
|
||||
from embedchain import App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
@@ -148,7 +148,7 @@ Hugging Face supports generating embeddings of arbitrary length documents of tex
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import Pipeline as App
|
||||
from embedchain import App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
@@ -179,7 +179,7 @@ Embedchain supports Google's VertexAI embeddings model through a simple interfac
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import Pipeline as App
|
||||
from embedchain import App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
|
||||
Reference in New Issue
Block a user