[Refactor] Converge Pipeline and App classes (#1021)

Co-authored-by: Deven Patel <deven298@yahoo.com>
This commit is contained in:
Deven Patel
2023-12-29 16:52:41 +05:30
committed by GitHub
parent c0aafd38c9
commit a926bcc640
91 changed files with 646 additions and 875 deletions

View File

@@ -25,7 +25,7 @@ Once you have obtained the key, you can use it like this:
```python main.py
import os
from embedchain import Pipeline as App
from embedchain import App
os.environ['OPENAI_API_KEY'] = 'xxx'
@@ -52,7 +52,7 @@ To use Google AI embedding function, you have to set the `GOOGLE_API_KEY` enviro
<CodeGroup>
```python main.py
import os
from embedchain import Pipeline as App
from embedchain import App
os.environ["GOOGLE_API_KEY"] = "xxx"
@@ -81,7 +81,7 @@ To use Azure OpenAI embedding model, you have to set some of the azure openai re
```python main.py
import os
from embedchain import Pipeline as App
from embedchain import App
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://xxx.openai.azure.com/"
@@ -119,7 +119,7 @@ GPT4All supports generating high quality embeddings of arbitrary length document
<CodeGroup>
```python main.py
from embedchain import Pipeline as App
from embedchain import App
# load embedding model configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
@@ -148,7 +148,7 @@ Hugging Face supports generating embeddings of arbitrary length documents of tex
<CodeGroup>
```python main.py
from embedchain import Pipeline as App
from embedchain import App
# load embedding model configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
@@ -179,7 +179,7 @@ Embedchain supports Google's VertexAI embeddings model through a simple interfac
<CodeGroup>
```python main.py
from embedchain import Pipeline as App
from embedchain import App
# load embedding model configuration from config.yaml file
app = App.from_config(config_path="config.yaml")