[Mem0] Update dependencies and make the package lighter (#1708)

Co-authored-by: Dev-Khant <devkhant24@gmail.com>
This commit is contained in:
Deshraj Yadav
2024-08-14 23:28:07 -07:00
committed by GitHub
parent e35786e567
commit a8ba7abb7d
35 changed files with 634 additions and 1594 deletions

View File

@@ -250,7 +250,7 @@ Mem0 supports several language models (LLMs) through integration with various [p
## Use Mem0 Platform
```python
from mem0 import Mem0
from mem0.proxy.main import Mem0
client = Mem0(api_key="m0-xxx")

View File

@@ -4,4 +4,3 @@ __version__ = importlib.metadata.version("mem0ai")
from mem0.memory.main import Memory # noqa
from mem0.client.main import MemoryClient # noqa
from mem0.proxy.main import Mem0 #noqa

View File

@@ -7,17 +7,26 @@ from mem0.vector_stores.configs import VectorStoreConfig
from mem0.llms.configs import LlmConfig
from mem0.embeddings.configs import EmbedderConfig
class MemoryItem(BaseModel):
id: str = Field(..., description="The unique identifier for the text data")
memory: str = Field(..., description="The memory deduced from the text data") # TODO After prompt changes from platform, update this
memory: str = Field(
..., description="The memory deduced from the text data"
) # TODO After prompt changes from platform, update this
hash: Optional[str] = Field(None, description="The hash of the memory")
# The metadata value can be anything and not just string. Fix it
metadata: Optional[Dict[str, Any]] = Field(None, description="Additional metadata for the text data")
metadata: Optional[Dict[str, Any]] = Field(
None, description="Additional metadata for the text data"
)
score: Optional[float] = Field(
None, description="The score associated with the text data"
)
created_at: Optional[str] = Field(None, description="The timestamp when the memory was created")
updated_at: Optional[str] = Field(None, description="The timestamp when the memory was updated")
created_at: Optional[str] = Field(
None, description="The timestamp when the memory was created"
)
updated_at: Optional[str] = Field(
None, description="The timestamp when the memory was updated"
)
class MemoryConfig(BaseModel):

View File

@@ -1,6 +1,7 @@
from abc import ABC
from typing import Optional
class BaseEmbedderConfig(ABC):
"""
Config for Embeddings.
@@ -11,12 +12,10 @@ class BaseEmbedderConfig(ABC):
model: Optional[str] = None,
api_key: Optional[str] = None,
embedding_dims: Optional[int] = None,
# Ollama specific
ollama_base_url: Optional[str] = None,
# Huggingface specific
model_kwargs: Optional[dict] = None
model_kwargs: Optional[dict] = None,
):
"""
Initializes a configuration class instance for the Embeddings.

View File

@@ -1,6 +1,7 @@
from abc import ABC
from typing import Optional
class BaseLlmConfig(ABC):
"""
Config for LLMs.
@@ -14,16 +15,14 @@ class BaseLlmConfig(ABC):
max_tokens: int = 3000,
top_p: float = 0,
top_k: int = 1,
# Openrouter specific
models: Optional[list[str]] = None,
route: Optional[str] = "fallback",
openrouter_base_url: Optional[str] = "https://openrouter.ai/api/v1",
site_url: Optional[str] = None,
app_name: Optional[str] = None,
# Ollama specific
ollama_base_url: Optional[str] = None
ollama_base_url: Optional[str] = None,
):
"""
Initializes a configuration class instance for the LLM.

View File

@@ -2,15 +2,20 @@ from typing import Optional, ClassVar, Dict, Any
from pydantic import BaseModel, Field, model_validator
class ChromaDbConfig(BaseModel):
try:
from chromadb.api.client import Client
except ImportError:
raise ImportError("Chromadb requires extra dependencies. Install with `pip install chromadb`") from None
raise ImportError(
"Chromadb requires extra dependencies. Install with `pip install chromadb`"
) from None
Client: ClassVar[type] = Client
collection_name: str = Field("mem0", description="Default name for the collection")
client: Optional[Client] = Field(None, description="Existing ChromaDB client instance")
client: Optional[Client] = Field(
None, description="Existing ChromaDB client instance"
)
path: Optional[str] = Field(None, description="Path to the database directory")
host: Optional[str] = Field(None, description="Database connection remote host")
port: Optional[int] = Field(None, description="Database connection remote port")
@@ -29,7 +34,9 @@ class ChromaDbConfig(BaseModel):
input_fields = set(values.keys())
extra_fields = input_fields - allowed_fields
if extra_fields:
raise ValueError(f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}")
raise ValueError(
f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}"
)
return values
model_config = {

View File

@@ -2,11 +2,14 @@ from typing import Optional, Dict, Any
from pydantic import BaseModel, Field, model_validator
class PGVectorConfig(BaseModel):
dbname: str = Field("postgres", description="Default name for the database")
collection_name: str = Field("mem0", description="Default name for the collection")
embedding_model_dims: Optional[int] = Field(1536, description="Dimensions of the embedding model")
embedding_model_dims: Optional[int] = Field(
1536, description="Dimensions of the embedding model"
)
user: Optional[str] = Field(None, description="Database user")
password: Optional[str] = Field(None, description="Database password")
host: Optional[str] = Field(None, description="Database host. Default is localhost")
@@ -29,6 +32,7 @@ class PGVectorConfig(BaseModel):
input_fields = set(values.keys())
extra_fields = input_fields - allowed_fields
if extra_fields:
raise ValueError(f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}")
raise ValueError(
f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}"
)
return values

View File

@@ -1,16 +1,24 @@
from pydantic import BaseModel, Field, model_validator
from typing import Optional, ClassVar, Dict, Any
class QdrantConfig(BaseModel):
from qdrant_client import QdrantClient
QdrantClient: ClassVar[type] = QdrantClient
collection_name: str = Field("mem0", description="Name of the collection")
embedding_model_dims: Optional[int] = Field(1536, description="Dimensions of the embedding model")
client: Optional[QdrantClient] = Field(None, description="Existing Qdrant client instance")
embedding_model_dims: Optional[int] = Field(
1536, description="Dimensions of the embedding model"
)
client: Optional[QdrantClient] = Field(
None, description="Existing Qdrant client instance"
)
host: Optional[str] = Field(None, description="Host address for Qdrant server")
port: Optional[int] = Field(None, description="Port for Qdrant server")
path: Optional[str] = Field("/tmp/qdrant", description="Path for local Qdrant database")
path: Optional[str] = Field(
"/tmp/qdrant", description="Path for local Qdrant database"
)
url: Optional[str] = Field(None, description="Full URL for Qdrant server")
api_key: Optional[str] = Field(None, description="API key for Qdrant server")
on_disk: Optional[bool] = Field(False, description="Enables persistent storage")
@@ -38,7 +46,9 @@ class QdrantConfig(BaseModel):
input_fields = set(values.keys())
extra_fields = input_fields - allowed_fields
if extra_fields:
raise ValueError(f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}")
raise ValueError(
f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}"
)
return values
model_config = {

View File

@@ -6,6 +6,7 @@ from openai import AzureOpenAI
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class AzureOpenAIEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
@@ -30,10 +31,7 @@ class AzureOpenAIEmbedding(EmbeddingBase):
"""
text = text.replace("\n", " ")
return (
self.client.embeddings.create(
input=[text],
model=self.config.model
)
self.client.embeddings.create(input=[text], model=self.config.model)
.data[0]
.embedding
)

View File

@@ -3,12 +3,14 @@ from abc import ABC, abstractmethod
from mem0.configs.embeddings.base import BaseEmbedderConfig
class EmbeddingBase(ABC):
"""Initialized a base embedding class
:param config: Embedding configuration option class, defaults to None
:type config: Optional[BaseEmbedderConfig], optional
"""
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
if config is None:
self.config = BaseEmbedderConfig()

View File

@@ -9,8 +9,7 @@ class EmbedderConfig(BaseModel):
default="openai",
)
config: Optional[dict] = Field(
description="Configuration for the specific embedding model",
default={}
description="Configuration for the specific embedding model", default={}
)
@field_validator("config")
@@ -20,4 +19,3 @@ class EmbedderConfig(BaseModel):
return v
else:
raise ValueError(f"Unsupported embedding provider: {provider}")

View File

@@ -13,15 +13,11 @@ class HuggingFaceEmbedding(EmbeddingBase):
if self.config.model is None:
self.config.model = "multi-qa-MiniLM-L6-cos-v1"
self.model = SentenceTransformer(
self.config.model,
**self.config.model_kwargs
)
self.model = SentenceTransformer(self.config.model, **self.config.model_kwargs)
if self.config.embedding_dims is None:
self.config.embedding_dims = self.model.get_sentence_embedding_dimension()
def embed(self, text):
"""
Get the embedding for the given text using Hugging Face.

View File

@@ -6,7 +6,9 @@ from mem0.embeddings.base import EmbeddingBase
try:
from ollama import Client
except ImportError:
raise ImportError("Ollama requires extra dependencies. Install with `pip install ollama`") from None
raise ImportError(
"Ollama requires extra dependencies. Install with `pip install ollama`"
) from None
class OllamaEmbedding(EmbeddingBase):

View File

@@ -6,6 +6,7 @@ from openai import OpenAI
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class OpenAIEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
@@ -28,10 +29,7 @@ class OpenAIEmbedding(EmbeddingBase):
"""
text = text.replace("\n", " ")
return (
self.client.embeddings.create(
input=[text],
model=self.config.model
)
self.client.embeddings.create(input=[text], model=self.config.model)
.data[0]
.embedding
)

View File

@@ -5,22 +5,30 @@ from typing import Dict, List, Optional, Any
try:
import boto3
except ImportError:
raise ImportError("AWS Bedrock requires extra dependencies. Install with `pip install boto3`") from None
raise ImportError(
"AWS Bedrock requires extra dependencies. Install with `pip install boto3`"
) from None
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class AWSBedrockLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model = "anthropic.claude-3-5-sonnet-20240620-v1:0"
self.client = boto3.client("bedrock-runtime", region_name=os.environ.get("AWS_REGION"), aws_access_key_id=os.environ.get("AWS_ACCESS_KEY"), aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"))
self.client = boto3.client(
"bedrock-runtime",
region_name=os.environ.get("AWS_REGION"),
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"),
)
self.model_kwargs = {
"temperature": self.config.temperature,
"max_tokens_to_sample": self.config.max_tokens,
"top_p": self.config.top_p
"top_p": self.config.top_p,
}
def _format_messages(self, messages: List[Dict[str, str]]) -> str:
@@ -36,8 +44,8 @@ class AWSBedrockLLM(LLMBase):
"""
formatted_messages = []
for message in messages:
role = message['role'].capitalize()
content = message['content']
role = message["role"].capitalize()
content = message["content"]
formatted_messages.append(f"\n\n{role}: {content}")
return "".join(formatted_messages) + "\n\nAssistant:"
@@ -54,22 +62,22 @@ class AWSBedrockLLM(LLMBase):
str or dict: The processed response.
"""
if tools:
processed_response = {
"tool_calls": []
}
processed_response = {"tool_calls": []}
if response["output"]["message"]["content"]:
for item in response["output"]["message"]["content"]:
if "toolUse" in item:
processed_response["tool_calls"].append({
processed_response["tool_calls"].append(
{
"name": item["toolUse"]["name"],
"arguments": item["toolUse"]["input"]
})
"arguments": item["toolUse"]["input"],
}
)
return processed_response
response_body = json.loads(response['body'].read().decode())
return response_body.get('completion', '')
response_body = json.loads(response["body"].read().decode())
return response_body.get("completion", "")
def _prepare_input(
self,
@@ -115,10 +123,14 @@ class AWSBedrockLLM(LLMBase):
"textGenerationConfig": {
"maxTokenCount": model_kwargs.get("max_tokens_to_sample"),
"topP": model_kwargs.get("top_p"),
"temperature": model_kwargs.get("temperature")
"temperature": model_kwargs.get("temperature"),
},
}
input_body["textGenerationConfig"] = {
k: v
for k, v in input_body["textGenerationConfig"].items()
if v is not None
}
input_body["textGenerationConfig"] = {k: v for k, v in input_body["textGenerationConfig"].items() if v is not None}
return input_body
@@ -135,26 +147,28 @@ class AWSBedrockLLM(LLMBase):
new_tools = []
for tool in original_tools:
if tool['type'] == 'function':
function = tool['function']
if tool["type"] == "function":
function = tool["function"]
new_tool = {
"toolSpec": {
"name": function['name'],
"description": function['description'],
"name": function["name"],
"description": function["description"],
"inputSchema": {
"json": {
"type": "object",
"properties": {},
"required": function['parameters'].get('required', [])
}
"required": function["parameters"].get("required", []),
}
},
}
}
for prop, details in function['parameters'].get('properties', {}).items():
for prop, details in (
function["parameters"].get("properties", {}).items()
):
new_tool["toolSpec"]["inputSchema"]["json"]["properties"][prop] = {
"type": details.get('type', 'string'),
"description": details.get('description', '')
"type": details.get("type", "string"),
"description": details.get("description", ""),
}
new_tools.append(new_tool)
@@ -181,28 +195,39 @@ class AWSBedrockLLM(LLMBase):
if tools:
# Use converse method when tools are provided
messages = [{"role": "user", "content": [{"text": message["content"]} for message in messages]}]
inference_config = {"temperature": self.model_kwargs["temperature"], "maxTokens": self.model_kwargs["max_tokens_to_sample"], "topP": self.model_kwargs["top_p"]}
messages = [
{
"role": "user",
"content": [{"text": message["content"]} for message in messages],
}
]
inference_config = {
"temperature": self.model_kwargs["temperature"],
"maxTokens": self.model_kwargs["max_tokens_to_sample"],
"topP": self.model_kwargs["top_p"],
}
tools_config = {"tools": self._convert_tool_format(tools)}
response = self.client.converse(
modelId=self.config.model,
messages=messages,
inferenceConfig=inference_config,
toolConfig=tools_config
toolConfig=tools_config,
)
else:
# Use invoke_model method when no tools are provided
prompt = self._format_messages(messages)
provider = self.model.split(".")[0]
input_body = self._prepare_input(provider, self.config.model, prompt, **self.model_kwargs)
input_body = self._prepare_input(
provider, self.config.model, prompt, **self.model_kwargs
)
body = json.dumps(input_body)
response = self.client.invoke_model(
body=body,
modelId=self.model,
accept='application/json',
contentType='application/json'
accept="application/json",
contentType="application/json",
)
return self._parse_response(response, tools)

View File

@@ -6,6 +6,7 @@ from openai import AzureOpenAI
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class AzureOpenAILLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
@@ -29,21 +30,22 @@ class AzureOpenAILLM(LLMBase):
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": []
"tool_calls": [],
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append({
processed_response["tool_calls"].append(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments)
})
"arguments": json.loads(tool_call.function.arguments),
}
)
return processed_response
else:
return response.choices[0].message.content
def generate_response(
self,
messages: List[Dict[str, str]],
@@ -68,7 +70,7 @@ class AzureOpenAILLM(LLMBase):
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
"top_p": self.config.top_p,
}
if response_format:
params["response_format"] = response_format

View File

@@ -14,8 +14,15 @@ class LlmConfig(BaseModel):
@field_validator("config")
def validate_config(cls, v, values):
provider = values.data.get("provider")
if provider in ("openai", "ollama", "groq", "together", "aws_bedrock", "litellm", "azure_openai"):
if provider in (
"openai",
"ollama",
"groq",
"together",
"aws_bedrock",
"litellm",
"azure_openai",
):
return v
else:
raise ValueError(f"Unsupported LLM provider: {provider}")

View File

@@ -4,7 +4,9 @@ from typing import Dict, List, Optional
try:
from groq import Groq
except ImportError:
raise ImportError("Groq requires extra dependencies. Install with `pip install groq`") from None
raise ImportError(
"Groq requires extra dependencies. Install with `pip install groq`"
) from None
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
@@ -32,15 +34,17 @@ class GroqLLM(LLMBase):
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": []
"tool_calls": [],
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append({
processed_response["tool_calls"].append(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments)
})
"arguments": json.loads(tool_call.function.arguments),
}
)
return processed_response
else:
@@ -70,7 +74,7 @@ class GroqLLM(LLMBase):
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
"top_p": self.config.top_p,
}
if response_format:
params["response_format"] = response_format

View File

@@ -1,7 +1,12 @@
import json
from typing import Dict, List, Optional
try:
import litellm
except ImportError:
raise ImportError(
"litellm requires extra dependencies. Install with `pip install litellm`"
) from None
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
@@ -28,15 +33,17 @@ class LiteLLM(LLMBase):
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": []
"tool_calls": [],
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append({
processed_response["tool_calls"].append(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments)
})
"arguments": json.loads(tool_call.function.arguments),
}
)
return processed_response
else:
@@ -62,14 +69,16 @@ class LiteLLM(LLMBase):
str: The generated response.
"""
if not litellm.supports_function_calling(self.config.model):
raise ValueError(f"Model '{self.config.model}' in litellm does not support function calling.")
raise ValueError(
f"Model '{self.config.model}' in litellm does not support function calling."
)
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
"top_p": self.config.top_p,
}
if response_format:
params["response_format"] = response_format

View File

@@ -3,11 +3,14 @@ from typing import Dict, List, Optional
try:
from ollama import Client
except ImportError:
raise ImportError("Ollama requires extra dependencies. Install with `pip install ollama`") from None
raise ImportError(
"Ollama requires extra dependencies. Install with `pip install ollama`"
) from None
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class OllamaLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
@@ -38,20 +41,22 @@ class OllamaLLM(LLMBase):
"""
if tools:
processed_response = {
"content": response['message']['content'],
"tool_calls": []
"content": response["message"]["content"],
"tool_calls": [],
}
if response['message'].get('tool_calls'):
for tool_call in response['message']['tool_calls']:
processed_response["tool_calls"].append({
if response["message"].get("tool_calls"):
for tool_call in response["message"]["tool_calls"]:
processed_response["tool_calls"].append(
{
"name": tool_call["function"]["name"],
"arguments": tool_call["function"]["arguments"]
})
"arguments": tool_call["function"]["arguments"],
}
)
return processed_response
else:
return response['message']['content']
return response["message"]["content"]
def generate_response(
self,
@@ -78,8 +83,8 @@ class OllamaLLM(LLMBase):
"options": {
"temperature": self.config.temperature,
"num_predict": self.config.max_tokens,
"top_p": self.config.top_p
}
"top_p": self.config.top_p,
},
}
if response_format:
params["format"] = response_format

View File

@@ -7,6 +7,7 @@ from openai import OpenAI
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class OpenAILLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
@@ -15,7 +16,10 @@ class OpenAILLM(LLMBase):
self.config.model = "gpt-4o"
if os.environ.get("OPENROUTER_API_KEY"): # Use OpenRouter
self.client = OpenAI(api_key=os.environ.get("OPENROUTER_API_KEY"), base_url=self.config.openrouter_base_url)
self.client = OpenAI(
api_key=os.environ.get("OPENROUTER_API_KEY"),
base_url=self.config.openrouter_base_url,
)
else:
api_key = os.getenv("OPENAI_API_KEY") or self.config.api_key
self.client = OpenAI(api_key=api_key)
@@ -34,15 +38,17 @@ class OpenAILLM(LLMBase):
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": []
"tool_calls": [],
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append({
processed_response["tool_calls"].append(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments)
})
"arguments": json.loads(tool_call.function.arguments),
}
)
return processed_response
else:
@@ -72,7 +78,7 @@ class OpenAILLM(LLMBase):
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
"top_p": self.config.top_p,
}
if os.getenv("OPENROUTER_API_KEY"):
@@ -85,7 +91,7 @@ class OpenAILLM(LLMBase):
if self.config.site_url and self.config.app_name:
extra_headers = {
"HTTP-Referer": self.config.site_url,
"X-Title": self.config.app_name
"X-Title": self.config.app_name,
}
openrouter_params["extra_headers"] = extra_headers

View File

@@ -4,11 +4,14 @@ from typing import Dict, List, Optional
try:
from together import Together
except ImportError:
raise ImportError("Together requires extra dependencies. Install with `pip install together`") from None
raise ImportError(
"Together requires extra dependencies. Install with `pip install together`"
) from None
from mem0.llms.base import LLMBase
from mem0.configs.llms.base import BaseLlmConfig
class TogetherLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
@@ -31,15 +34,17 @@ class TogetherLLM(LLMBase):
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": []
"tool_calls": [],
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append({
processed_response["tool_calls"].append(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments)
})
"arguments": json.loads(tool_call.function.arguments),
}
)
return processed_response
else:
@@ -69,7 +74,7 @@ class TogetherLLM(LLMBase):
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
"top_p": self.config.top_p,
}
if response_format:
params["response_format"] = response_format

View File

@@ -28,8 +28,12 @@ setup_config()
class Memory(MemoryBase):
def __init__(self, config: MemoryConfig = MemoryConfig()):
self.config = config
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider, self.config.embedder.config)
self.vector_store = VectorStoreFactory.create(self.config.vector_store.provider, self.config.vector_store.config)
self.embedding_model = EmbedderFactory.create(
self.config.embedder.provider, self.config.embedder.config
)
self.vector_store = VectorStoreFactory.create(
self.config.vector_store.provider, self.config.vector_store.config
)
self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config)
self.db = SQLiteManager(self.config.history_db_path)
self.collection_name = self.config.vector_store.config.collection_name
@@ -172,7 +176,11 @@ class Memory(MemoryBase):
if not memory:
return None
filters = {key: memory.payload[key] for key in ["user_id", "agent_id", "run_id"] if memory.payload.get(key)}
filters = {
key: memory.payload[key]
for key in ["user_id", "agent_id", "run_id"]
if memory.payload.get(key)
}
# Prepare base memory item
memory_item = MemoryItem(
@@ -184,8 +192,18 @@ class Memory(MemoryBase):
).model_dump(exclude={"score"})
# Add metadata if there are additional keys
excluded_keys = {"user_id", "agent_id", "run_id", "hash", "data", "created_at", "updated_at"}
additional_metadata = {k: v for k, v in memory.payload.items() if k not in excluded_keys}
excluded_keys = {
"user_id",
"agent_id",
"run_id",
"hash",
"data",
"created_at",
"updated_at",
}
additional_metadata = {
k: v for k, v in memory.payload.items() if k not in excluded_keys
}
if additional_metadata:
memory_item["metadata"] = additional_metadata
@@ -211,7 +229,15 @@ class Memory(MemoryBase):
capture_event("mem0.get_all", self, {"filters": len(filters), "limit": limit})
memories = self.vector_store.list(filters=filters, limit=limit)
excluded_keys = {"user_id", "agent_id", "run_id", "hash", "data", "created_at", "updated_at"}
excluded_keys = {
"user_id",
"agent_id",
"run_id",
"hash",
"data",
"created_at",
"updated_at",
}
return [
{
**MemoryItem(
@@ -221,9 +247,22 @@ class Memory(MemoryBase):
created_at=mem.payload.get("created_at"),
updated_at=mem.payload.get("updated_at"),
).model_dump(exclude={"score"}),
**{key: mem.payload[key] for key in ["user_id", "agent_id", "run_id"] if key in mem.payload},
**({"metadata": {k: v for k, v in mem.payload.items() if k not in excluded_keys}}
if any(k for k in mem.payload if k not in excluded_keys) else {})
**{
key: mem.payload[key]
for key in ["user_id", "agent_id", "run_id"]
if key in mem.payload
},
**(
{
"metadata": {
k: v
for k, v in mem.payload.items()
if k not in excluded_keys
}
}
if any(k for k in mem.payload if k not in excluded_keys)
else {}
),
}
for mem in memories[0]
]
@@ -255,9 +294,19 @@ class Memory(MemoryBase):
capture_event("mem0.search", self, {"filters": len(filters), "limit": limit})
embeddings = self.embedding_model.embed(query)
memories = self.vector_store.search(query=embeddings, limit=limit, filters=filters)
memories = self.vector_store.search(
query=embeddings, limit=limit, filters=filters
)
excluded_keys = {"user_id", "agent_id", "run_id", "hash", "data", "created_at", "updated_at"}
excluded_keys = {
"user_id",
"agent_id",
"run_id",
"hash",
"data",
"created_at",
"updated_at",
}
return [
{
@@ -269,9 +318,22 @@ class Memory(MemoryBase):
updated_at=mem.payload.get("updated_at"),
score=mem.score,
).model_dump(),
**{key: mem.payload[key] for key in ["user_id", "agent_id", "run_id"] if key in mem.payload},
**({"metadata": {k: v for k, v in mem.payload.items() if k not in excluded_keys}}
if any(k for k in mem.payload if k not in excluded_keys) else {})
**{
key: mem.payload[key]
for key in ["user_id", "agent_id", "run_id"]
if key in mem.payload
},
**(
{
"metadata": {
k: v
for k, v in mem.payload.items()
if k not in excluded_keys
}
}
if any(k for k in mem.payload if k not in excluded_keys)
else {}
),
}
for mem in memories
]
@@ -289,7 +351,7 @@ class Memory(MemoryBase):
"""
capture_event("mem0.update", self, {"memory_id": memory_id})
self._update_memory_tool(memory_id, data)
return {'message': 'Memory updated successfully!'}
return {"message": "Memory updated successfully!"}
def delete(self, memory_id):
"""
@@ -300,7 +362,7 @@ class Memory(MemoryBase):
"""
capture_event("mem0.delete", self, {"memory_id": memory_id})
self._delete_memory_tool(memory_id)
return {'message': 'Memory deleted successfully!'}
return {"message": "Memory deleted successfully!"}
def delete_all(self, user_id=None, agent_id=None, run_id=None):
"""
@@ -328,7 +390,7 @@ class Memory(MemoryBase):
memories = self.vector_store.list(filters=filters)[0]
for memory in memories:
self._delete_memory_tool(memory.id)
return {'message': 'Memories deleted successfully!'}
return {"message": "Memories deleted successfully!"}
def history(self, memory_id):
"""
@@ -350,14 +412,16 @@ class Memory(MemoryBase):
metadata = metadata or {}
metadata["data"] = data
metadata["hash"] = hashlib.md5(data.encode()).hexdigest()
metadata["created_at"] = datetime.now(pytz.timezone('US/Pacific')).isoformat()
metadata["created_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
self.vector_store.insert(
vectors=[embeddings],
ids=[memory_id],
payloads=[metadata],
)
self.db.add_history(memory_id, None, data, "ADD", created_at=metadata["created_at"])
self.db.add_history(
memory_id, None, data, "ADD", created_at=metadata["created_at"]
)
return memory_id
def _update_memory_tool(self, memory_id, data, metadata=None):
@@ -368,7 +432,9 @@ class Memory(MemoryBase):
new_metadata["data"] = data
new_metadata["hash"] = existing_memory.payload.get("hash")
new_metadata["created_at"] = existing_memory.payload.get("created_at")
new_metadata["updated_at"] = datetime.now(pytz.timezone('US/Pacific')).isoformat()
new_metadata["updated_at"] = datetime.now(
pytz.timezone("US/Pacific")
).isoformat()
if "user_id" in existing_memory.payload:
new_metadata["user_id"] = existing_memory.payload["user_id"]
@@ -384,7 +450,14 @@ class Memory(MemoryBase):
payload=new_metadata,
)
logging.info(f"Updating memory with ID {memory_id=} with {data=}")
self.db.add_history(memory_id, prev_value, data, "UPDATE", created_at=new_metadata["created_at"], updated_at=new_metadata["updated_at"])
self.db.add_history(
memory_id,
prev_value,
data,
"UPDATE",
created_at=new_metadata["created_at"],
updated_at=new_metadata["updated_at"],
)
def _delete_memory_tool(self, memory_id):
logging.info(f"Deleting memory with {memory_id=}")

View File

@@ -27,5 +27,5 @@ def get_user_id():
config = json.load(config_file)
user_id = config.get("user_id")
return user_id
except:
except Exception:
return "anonymous_user"

View File

@@ -12,7 +12,9 @@ class SQLiteManager:
with self.connection:
cursor = self.connection.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='history'")
cursor.execute(
"SELECT name FROM sqlite_master WHERE type='table' AND name='history'"
)
table_exists = cursor.fetchone() is not None
if table_exists:
@@ -22,15 +24,15 @@ class SQLiteManager:
# Define the expected schema
expected_schema = {
'id': 'TEXT',
'memory_id': 'TEXT',
'old_memory': 'TEXT',
'new_memory': 'TEXT',
'new_value': 'TEXT',
'event': 'TEXT',
'created_at': 'DATETIME',
'updated_at': 'DATETIME',
'is_deleted': 'INTEGER'
"id": "TEXT",
"memory_id": "TEXT",
"old_memory": "TEXT",
"new_memory": "TEXT",
"new_value": "TEXT",
"event": "TEXT",
"created_at": "DATETIME",
"updated_at": "DATETIME",
"is_deleted": "INTEGER",
}
# Check if the schemas are the same
@@ -38,7 +40,8 @@ class SQLiteManager:
# Rename the old table
cursor.execute("ALTER TABLE history RENAME TO old_history")
cursor.execute("""
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS history (
id TEXT PRIMARY KEY,
memory_id TEXT,
@@ -50,20 +53,22 @@ class SQLiteManager:
updated_at DATETIME,
is_deleted INTEGER
)
""")
"""
)
# Copy data from the old table to the new table
cursor.execute("""
cursor.execute(
"""
INSERT INTO history (id, memory_id, old_memory, new_memory, new_value, event, created_at, updated_at, is_deleted)
SELECT id, memory_id, prev_value, new_value, new_value, event, timestamp, timestamp, is_deleted
FROM old_history
""")
"""
)
cursor.execute("DROP TABLE old_history")
self.connection.commit()
def _create_history_table(self):
with self.connection:
self.connection.execute(
@@ -82,7 +87,16 @@ class SQLiteManager:
"""
)
def add_history(self, memory_id, old_memory, new_memory, event, created_at = None, updated_at = None, is_deleted=0):
def add_history(
self,
memory_id,
old_memory,
new_memory,
event,
created_at=None,
updated_at=None,
is_deleted=0,
):
with self.connection:
self.connection.execute(
"""

View File

@@ -1,17 +1,25 @@
import httpx
from typing import Optional, List, Union
import threading
import litellm
try:
import litellm
except ImportError:
raise ImportError(
"litellm requires extra dependencies. Install with `pip install litellm`"
) from None
from mem0.memory.telemetry import capture_client_event
from mem0 import Memory, MemoryClient
from mem0.configs.prompts import MEMORY_ANSWER_PROMPT
class Mem0:
def __init__(
self,
config: Optional[dict] = None,
api_key: Optional[str] = None,
host: Optional[str] = None
host: Optional[str] = None,
):
if api_key:
self.mem0_client = MemoryClient(api_key, host)
@@ -77,13 +85,21 @@ class Completions:
raise ValueError("One of user_id, agent_id, run_id must be provided")
if not litellm.supports_function_calling(model):
raise ValueError(f"Model '{model}' does not support function calling. Please use a model that supports function calling.")
raise ValueError(
f"Model '{model}' does not support function calling. Please use a model that supports function calling."
)
prepared_messages = self._prepare_messages(messages)
if prepared_messages[-1]["role"] == "user":
self._async_add_to_memory(messages, user_id, agent_id, run_id, metadata, filters)
relevant_memories = self._fetch_relevant_memories(messages, user_id, agent_id, run_id, filters, limit)
prepared_messages[-1]["content"] = self._format_query_with_memories(messages, relevant_memories)
self._async_add_to_memory(
messages, user_id, agent_id, run_id, metadata, filters
)
relevant_memories = self._fetch_relevant_memories(
messages, user_id, agent_id, run_id, filters, limit
)
prepared_messages[-1]["content"] = self._format_query_with_memories(
messages, relevant_memories
)
response = litellm.completion(
model=model,
@@ -114,9 +130,9 @@ class Completions:
base_url=base_url,
api_version=api_version,
api_key=api_key,
model_list=model_list
model_list=model_list,
)
capture_client_event("mem0.chat.create", self)
return response
def _prepare_messages(self, messages: List[dict]) -> List[dict]:
@@ -125,7 +141,9 @@ class Completions:
messages[0]["content"] = MEMORY_ANSWER_PROMPT
return messages
def _async_add_to_memory(self, messages, user_id, agent_id, run_id, metadata, filters):
def _async_add_to_memory(
self, messages, user_id, agent_id, run_id, metadata, filters
):
def add_task():
self.mem0_client.add(
messages=messages,
@@ -135,11 +153,16 @@ class Completions:
metadata=metadata,
filters=filters,
)
threading.Thread(target=add_task, daemon=True).start()
def _fetch_relevant_memories(self, messages, user_id, agent_id, run_id, filters, limit):
def _fetch_relevant_memories(
self, messages, user_id, agent_id, run_id, filters, limit
):
# Currently, only pass the last 6 messages to the search API to prevent long query
message_input = [f"{message['role']}: {message['content']}" for message in messages][-6:]
message_input = [
f"{message['role']}: {message['content']}" for message in messages
][-6:]
# TODO: Make it better by summarizing the past conversation
return self.mem0_client.search(
query="\n".join(message_input),

View File

@@ -3,6 +3,7 @@ import importlib
from mem0.configs.llms.base import BaseLlmConfig
from mem0.configs.embeddings.base import BaseEmbedderConfig
def load_class(class_type):
module_path, class_name = class_type.rsplit(".", 1)
module = importlib.import_module(module_path)
@@ -30,6 +31,7 @@ class LlmFactory:
else:
raise ValueError(f"Unsupported Llm provider: {provider_name}")
class EmbedderFactory:
provider_to_class = {
"openai": "mem0.embeddings.openai.OpenAIEmbedding",
@@ -48,11 +50,12 @@ class EmbedderFactory:
else:
raise ValueError(f"Unsupported Embedder provider: {provider_name}")
class VectorStoreFactory:
provider_to_class = {
"qdrant": "mem0.vector_stores.qdrant.Qdrant",
"chroma": "mem0.vector_stores.chroma.ChromaDB",
"pgvector": "mem0.vector_stores.pgvector.PGVector"
"pgvector": "mem0.vector_stores.pgvector.PGVector",
}
@classmethod

View File

@@ -7,7 +7,9 @@ try:
import chromadb
from chromadb.config import Settings
except ImportError:
raise ImportError("Chromadb requires extra dependencies. Install with `pip install chromadb`") from None
raise ImportError(
"Chromadb requires extra dependencies. Install with `pip install chromadb`"
) from None
from mem0.vector_stores.base import VectorStoreBase
@@ -25,7 +27,7 @@ class ChromaDB(VectorStoreBase):
client: Optional[chromadb.Client] = None,
host: Optional[str] = None,
port: Optional[int] = None,
path: Optional[str] = None
path: Optional[str] = None,
):
"""
Initialize the Chromadb vector store.
@@ -68,7 +70,7 @@ class ChromaDB(VectorStoreBase):
Returns:
List[OutputData]: Parsed output data.
"""
keys = ['ids', 'distances', 'metadatas']
keys = ["ids", "distances", "metadatas"]
values = []
for key in keys:
@@ -78,14 +80,24 @@ class ChromaDB(VectorStoreBase):
values.append(value)
ids, distances, metadatas = values
max_length = max(len(v) for v in values if isinstance(v, list) and v is not None)
max_length = max(
len(v) for v in values if isinstance(v, list) and v is not None
)
result = []
for i in range(max_length):
entry = OutputData(
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
score=distances[i] if isinstance(distances, list) and distances and i < len(distances) else None,
payload=metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None,
score=(
distances[i]
if isinstance(distances, list) and distances and i < len(distances)
else None
),
payload=(
metadatas[i]
if isinstance(metadatas, list) and metadatas and i < len(metadatas)
else None
),
)
result.append(entry)
@@ -114,7 +126,12 @@ class ChromaDB(VectorStoreBase):
)
return collection
def insert(self, vectors: List[list], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None):
def insert(
self,
vectors: List[list],
payloads: Optional[List[Dict]] = None,
ids: Optional[List[str]] = None,
):
"""
Insert vectors into a collection.
@@ -125,7 +142,9 @@ class ChromaDB(VectorStoreBase):
"""
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
def search(self, query: List[list], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
def search(
self, query: List[list], limit: int = 5, filters: Optional[Dict] = None
) -> List[OutputData]:
"""
Search for similar vectors.
@@ -137,7 +156,9 @@ class ChromaDB(VectorStoreBase):
Returns:
List[OutputData]: Search results.
"""
results = self.collection.query(query_embeddings=query, where=filters, n_results=limit)
results = self.collection.query(
query_embeddings=query, where=filters, n_results=limit
)
final_results = self._parse_output(results)
return final_results
@@ -150,7 +171,12 @@ class ChromaDB(VectorStoreBase):
"""
self.collection.delete(ids=vector_id)
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None):
def update(
self,
vector_id: str,
vector: Optional[List[float]] = None,
payload: Optional[Dict] = None,
):
"""
Update a vector and its payload.
@@ -198,7 +224,9 @@ class ChromaDB(VectorStoreBase):
"""
return self.client.get_collection(name=self.collection_name)
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[OutputData]:
def list(
self, filters: Optional[Dict] = None, limit: int = 100
) -> List[OutputData]:
"""
List all vectors in a collection.

View File

@@ -1,31 +1,34 @@
from typing import Optional, Dict
from pydantic import BaseModel, Field, model_validator
class VectorStoreConfig(BaseModel):
provider: str = Field(
description="Provider of the vector store (e.g., 'qdrant', 'chroma')",
default="qdrant",
)
config: Optional[Dict] = Field(
description="Configuration for the specific vector store",
default=None
description="Configuration for the specific vector store", default=None
)
_provider_configs: Dict[str, str] = {
"qdrant": "QdrantConfig",
"chroma": "ChromaDbConfig",
"pgvector": "PGVectorConfig"
"pgvector": "PGVectorConfig",
}
@model_validator(mode="after")
def validate_and_create_config(self) -> 'VectorStoreConfig':
def validate_and_create_config(self) -> "VectorStoreConfig":
provider = self.provider
config = self.config
if provider not in self._provider_configs:
raise ValueError(f"Unsupported vector store provider: {provider}")
module = __import__(f"mem0.configs.vector_stores.{provider}", fromlist=[self._provider_configs[provider]])
module = __import__(
f"mem0.configs.vector_stores.{provider}",
fromlist=[self._provider_configs[provider]],
)
config_class = getattr(module, self._provider_configs[provider])
if config is None:

View File

@@ -1,16 +1,19 @@
import json
from typing import Optional, List, Dict, Any
from typing import Optional, List
from pydantic import BaseModel
try:
import psycopg2
from psycopg2.extras import execute_values
except ImportError:
raise ImportError("PGVector requires extra dependencies. Install with `pip install psycopg2`") from None
raise ImportError(
"PGVector requires extra dependencies. Install with `pip install psycopg2`"
) from None
from mem0.vector_stores.base import VectorStoreBase
class OutputData(BaseModel):
id: Optional[str]
score: Optional[float]
@@ -19,14 +22,7 @@ class OutputData(BaseModel):
class PGVector(VectorStoreBase):
def __init__(
self,
dbname,
collection_name,
embedding_model_dims,
user,
password,
host,
port
self, dbname, collection_name, embedding_model_dims, user, password, host, port
):
"""
Initialize the PGVector database.
@@ -43,11 +39,7 @@ class PGVector(VectorStoreBase):
self.collection_name = collection_name
self.conn = psycopg2.connect(
dbname=dbname,
user=user,
password=password,
host=host,
port=port
dbname=dbname, user=user, password=password, host=host, port=port
)
self.cur = self.conn.cursor()
@@ -63,13 +55,15 @@ class PGVector(VectorStoreBase):
name (str): Name of the collection.
embedding_model_dims (int, optional): Dimension of the embedding vector.
"""
self.cur.execute(f"""
self.cur.execute(
f"""
CREATE TABLE IF NOT EXISTS {self.collection_name} (
id UUID PRIMARY KEY,
vector vector({embedding_model_dims}),
payload JSONB
);
""")
"""
)
self.conn.commit()
def insert(self, vectors, payloads=None, ids=None):
@@ -83,8 +77,15 @@ class PGVector(VectorStoreBase):
"""
json_payloads = [json.dumps(payload) for payload in payloads]
data = [(id, vector, payload) for id, vector, payload in zip(ids, vectors, json_payloads)]
execute_values(self.cur, f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s", data)
data = [
(id, vector, payload)
for id, vector, payload in zip(ids, vectors, json_payloads)
]
execute_values(
self.cur,
f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s",
data,
)
self.conn.commit()
def search(self, query, limit=5, filters=None):
@@ -104,21 +105,28 @@ class PGVector(VectorStoreBase):
if filters:
for k, v in filters.items():
filter_conditions.append(f"payload->>%s = %s")
filter_conditions.append("payload->>%s = %s")
filter_params.extend([k, str(v)])
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
filter_clause = (
"WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
)
self.cur.execute(f"""
self.cur.execute(
f"""
SELECT id, vector <-> %s::vector AS distance, payload
FROM {self.collection_name}
{filter_clause}
ORDER BY distance
LIMIT %s
""", (query, *filter_params, limit))
""",
(query, *filter_params, limit),
)
results = self.cur.fetchall()
return [OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results]
return [
OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results
]
def delete(self, vector_id):
"""
@@ -127,7 +135,9 @@ class PGVector(VectorStoreBase):
Args:
vector_id (str): ID of the vector to delete.
"""
self.cur.execute(f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,))
self.cur.execute(
f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,)
)
self.conn.commit()
def update(self, vector_id, vector=None, payload=None):
@@ -140,9 +150,15 @@ class PGVector(VectorStoreBase):
payload (Dict, optional): Updated payload.
"""
if vector:
self.cur.execute(f"UPDATE {self.collection_name} SET vector = %s WHERE id = %s", (vector, vector_id))
self.cur.execute(
f"UPDATE {self.collection_name} SET vector = %s WHERE id = %s",
(vector, vector_id),
)
if payload:
self.cur.execute(f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s", (psycopg2.extras.Json(payload), vector_id))
self.cur.execute(
f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s",
(psycopg2.extras.Json(payload), vector_id),
)
self.conn.commit()
def get(self, vector_id) -> OutputData:
@@ -155,7 +171,10 @@ class PGVector(VectorStoreBase):
Returns:
OutputData: Retrieved vector.
"""
self.cur.execute(f"SELECT id, vector, payload FROM {self.collection_name} WHERE id = %s", (vector_id,))
self.cur.execute(
f"SELECT id, vector, payload FROM {self.collection_name} WHERE id = %s",
(vector_id,),
)
result = self.cur.fetchone()
if not result:
return None
@@ -168,7 +187,9 @@ class PGVector(VectorStoreBase):
Returns:
List[str]: List of collection names.
"""
self.cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'")
self.cur.execute(
"SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'"
)
return [row[0] for row in self.cur.fetchall()]
def delete_col(self):
@@ -183,20 +204,19 @@ class PGVector(VectorStoreBase):
Returns:
Dict[str, Any]: Collection information.
"""
self.cur.execute(f"""
self.cur.execute(
f"""
SELECT
table_name,
(SELECT COUNT(*) FROM {self.collection_name}) as row_count,
(SELECT pg_size_pretty(pg_total_relation_size('{self.collection_name}'))) as total_size
FROM information_schema.tables
WHERE table_schema = 'public' AND table_name = %s
""", (self.collection_name,))
""",
(self.collection_name,),
)
result = self.cur.fetchone()
return {
"name": result[0],
"count": result[1],
"size": result[2]
}
return {"name": result[0], "count": result[1], "size": result[2]}
def list(self, filters=None, limit=100):
"""
@@ -214,10 +234,12 @@ class PGVector(VectorStoreBase):
if filters:
for k, v in filters.items():
filter_conditions.append(f"payload->>%s = %s")
filter_conditions.append("payload->>%s = %s")
filter_params.extend([k, str(v)])
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
filter_clause = (
"WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
)
query = f"""
SELECT id, vector, payload
@@ -235,7 +257,7 @@ class PGVector(VectorStoreBase):
"""
Close the database connection when the object is deleted.
"""
if hasattr(self, 'cur'):
if hasattr(self, "cur"):
self.cur.close()
if hasattr(self, 'conn'):
if hasattr(self, "conn"):
self.conn.close()

View File

@@ -28,7 +28,7 @@ class Qdrant(VectorStoreBase):
path: str = None,
url: str = None,
api_key: str = None,
on_disk: bool = False
on_disk: bool = False,
):
"""
Initialize the Qdrant vector store.
@@ -66,7 +66,9 @@ class Qdrant(VectorStoreBase):
self.collection_name = collection_name
self.create_col(embedding_model_dims, on_disk)
def create_col(self, vector_size: int, on_disk: bool, distance: Distance = Distance.COSINE):
def create_col(
self, vector_size: int, on_disk: bool, distance: Distance = Distance.COSINE
):
"""
Create a new collection.
@@ -79,12 +81,16 @@ class Qdrant(VectorStoreBase):
response = self.list_cols()
for collection in response.collections:
if collection.name == self.collection_name:
logging.debug(f"Collection {self.collection_name} already exists. Skipping creation.")
logging.debug(
f"Collection {self.collection_name} already exists. Skipping creation."
)
return
self.client.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(size=vector_size, distance=distance, on_disk=on_disk),
vectors_config=VectorParams(
size=vector_size, distance=distance, on_disk=on_disk
),
)
def insert(self, vectors: list, payloads: list = None, ids: list = None):

1222
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "mem0ai"
version = "0.0.19"
version = "0.0.20"
description = "Long-term memory for AI Agents"
authors = ["Mem0 <founders@mem0.ai>"]
exclude = [
@@ -22,7 +22,6 @@ openai = "^1.33.0"
posthog = "^3.5.0"
pytz = "^2024.1"
sqlalchemy = "^2.0.31"
litellm = "^1.42.7"
[tool.poetry.group.test.dependencies]
pytest = "^8.2.2"

View File

@@ -2,7 +2,8 @@ import pytest
from unittest.mock import Mock, patch
from mem0.configs.prompts import MEMORY_ANSWER_PROMPT
from mem0 import Memory, MemoryClient, Mem0
from mem0 import Memory, MemoryClient
from mem0.proxy.main import Mem0
from mem0.proxy.main import Chat, Completions
@pytest.fixture