[Mem0] Update dependencies and make the package lighter (#1708)

Co-authored-by: Dev-Khant <devkhant24@gmail.com>
This commit is contained in:
Deshraj Yadav
2024-08-14 23:28:07 -07:00
committed by GitHub
parent e35786e567
commit a8ba7abb7d
35 changed files with 634 additions and 1594 deletions

View File

@@ -7,14 +7,16 @@ try:
import chromadb
from chromadb.config import Settings
except ImportError:
raise ImportError("Chromadb requires extra dependencies. Install with `pip install chromadb`") from None
raise ImportError(
"Chromadb requires extra dependencies. Install with `pip install chromadb`"
) from None
from mem0.vector_stores.base import VectorStoreBase
class OutputData(BaseModel):
id: Optional[str] # memory id
score: Optional[float] # distance
score: Optional[float] # distance
payload: Optional[Dict] # metadata
@@ -25,7 +27,7 @@ class ChromaDB(VectorStoreBase):
client: Optional[chromadb.Client] = None,
host: Optional[str] = None,
port: Optional[int] = None,
path: Optional[str] = None
path: Optional[str] = None,
):
"""
Initialize the Chromadb vector store.
@@ -68,7 +70,7 @@ class ChromaDB(VectorStoreBase):
Returns:
List[OutputData]: Parsed output data.
"""
keys = ['ids', 'distances', 'metadatas']
keys = ["ids", "distances", "metadatas"]
values = []
for key in keys:
@@ -78,14 +80,24 @@ class ChromaDB(VectorStoreBase):
values.append(value)
ids, distances, metadatas = values
max_length = max(len(v) for v in values if isinstance(v, list) and v is not None)
max_length = max(
len(v) for v in values if isinstance(v, list) and v is not None
)
result = []
for i in range(max_length):
entry = OutputData(
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
score=distances[i] if isinstance(distances, list) and distances and i < len(distances) else None,
payload=metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None,
score=(
distances[i]
if isinstance(distances, list) and distances and i < len(distances)
else None
),
payload=(
metadatas[i]
if isinstance(metadatas, list) and metadatas and i < len(metadatas)
else None
),
)
result.append(entry)
@@ -114,7 +126,12 @@ class ChromaDB(VectorStoreBase):
)
return collection
def insert(self, vectors: List[list], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None):
def insert(
self,
vectors: List[list],
payloads: Optional[List[Dict]] = None,
ids: Optional[List[str]] = None,
):
"""
Insert vectors into a collection.
@@ -125,7 +142,9 @@ class ChromaDB(VectorStoreBase):
"""
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
def search(self, query: List[list], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
def search(
self, query: List[list], limit: int = 5, filters: Optional[Dict] = None
) -> List[OutputData]:
"""
Search for similar vectors.
@@ -137,7 +156,9 @@ class ChromaDB(VectorStoreBase):
Returns:
List[OutputData]: Search results.
"""
results = self.collection.query(query_embeddings=query, where=filters, n_results=limit)
results = self.collection.query(
query_embeddings=query, where=filters, n_results=limit
)
final_results = self._parse_output(results)
return final_results
@@ -150,7 +171,12 @@ class ChromaDB(VectorStoreBase):
"""
self.collection.delete(ids=vector_id)
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None):
def update(
self,
vector_id: str,
vector: Optional[List[float]] = None,
payload: Optional[Dict] = None,
):
"""
Update a vector and its payload.
@@ -184,8 +210,8 @@ class ChromaDB(VectorStoreBase):
return self.client.list_collections()
def delete_col(self):
"""
Delete a collection.
"""
Delete a collection.
"""
self.client.delete_collection(name=self.collection_name)
@@ -198,7 +224,9 @@ class ChromaDB(VectorStoreBase):
"""
return self.client.get_collection(name=self.collection_name)
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[OutputData]:
def list(
self, filters: Optional[Dict] = None, limit: int = 100
) -> List[OutputData]:
"""
List all vectors in a collection.

View File

@@ -1,31 +1,34 @@
from typing import Optional, Dict
from pydantic import BaseModel, Field, model_validator
class VectorStoreConfig(BaseModel):
provider: str = Field(
description="Provider of the vector store (e.g., 'qdrant', 'chroma')",
default="qdrant",
)
config: Optional[Dict] = Field(
description="Configuration for the specific vector store",
default=None
description="Configuration for the specific vector store", default=None
)
_provider_configs: Dict[str, str] = {
"qdrant": "QdrantConfig",
"chroma": "ChromaDbConfig",
"pgvector": "PGVectorConfig"
"pgvector": "PGVectorConfig",
}
@model_validator(mode="after")
def validate_and_create_config(self) -> 'VectorStoreConfig':
def validate_and_create_config(self) -> "VectorStoreConfig":
provider = self.provider
config = self.config
if provider not in self._provider_configs:
raise ValueError(f"Unsupported vector store provider: {provider}")
module = __import__(f"mem0.configs.vector_stores.{provider}", fromlist=[self._provider_configs[provider]])
module = __import__(
f"mem0.configs.vector_stores.{provider}",
fromlist=[self._provider_configs[provider]],
)
config_class = getattr(module, self._provider_configs[provider])
if config is None:
@@ -40,4 +43,4 @@ class VectorStoreConfig(BaseModel):
config["path"] = f"/tmp/{provider}"
self.config = config_class(**config)
return self
return self

View File

@@ -1,16 +1,19 @@
import json
from typing import Optional, List, Dict, Any
from typing import Optional, List
from pydantic import BaseModel
try:
import psycopg2
from psycopg2.extras import execute_values
except ImportError:
raise ImportError("PGVector requires extra dependencies. Install with `pip install psycopg2`") from None
raise ImportError(
"PGVector requires extra dependencies. Install with `pip install psycopg2`"
) from None
from mem0.vector_stores.base import VectorStoreBase
class OutputData(BaseModel):
id: Optional[str]
score: Optional[float]
@@ -19,14 +22,7 @@ class OutputData(BaseModel):
class PGVector(VectorStoreBase):
def __init__(
self,
dbname,
collection_name,
embedding_model_dims,
user,
password,
host,
port
self, dbname, collection_name, embedding_model_dims, user, password, host, port
):
"""
Initialize the PGVector database.
@@ -43,18 +39,14 @@ class PGVector(VectorStoreBase):
self.collection_name = collection_name
self.conn = psycopg2.connect(
dbname=dbname,
user=user,
password=password,
host=host,
port=port
dbname=dbname, user=user, password=password, host=host, port=port
)
self.cur = self.conn.cursor()
collections = self.list_cols()
if collection_name not in collections:
self.create_col(embedding_model_dims)
def create_col(self, embedding_model_dims):
"""
Create a new collection (table in PostgreSQL).
@@ -63,16 +55,18 @@ class PGVector(VectorStoreBase):
name (str): Name of the collection.
embedding_model_dims (int, optional): Dimension of the embedding vector.
"""
self.cur.execute(f"""
self.cur.execute(
f"""
CREATE TABLE IF NOT EXISTS {self.collection_name} (
id UUID PRIMARY KEY,
vector vector({embedding_model_dims}),
payload JSONB
);
""")
"""
)
self.conn.commit()
def insert(self, vectors, payloads = None, ids = None):
def insert(self, vectors, payloads=None, ids=None):
"""
Insert vectors into a collection.
@@ -83,11 +77,18 @@ class PGVector(VectorStoreBase):
"""
json_payloads = [json.dumps(payload) for payload in payloads]
data = [(id, vector, payload) for id, vector, payload in zip(ids, vectors, json_payloads)]
execute_values(self.cur, f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s", data)
data = [
(id, vector, payload)
for id, vector, payload in zip(ids, vectors, json_payloads)
]
execute_values(
self.cur,
f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s",
data,
)
self.conn.commit()
def search(self, query, limit = 5, filters = None):
def search(self, query, limit=5, filters=None):
"""
Search for similar vectors.
@@ -104,21 +105,28 @@ class PGVector(VectorStoreBase):
if filters:
for k, v in filters.items():
filter_conditions.append(f"payload->>%s = %s")
filter_conditions.append("payload->>%s = %s")
filter_params.extend([k, str(v)])
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
filter_clause = (
"WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
)
self.cur.execute(f"""
self.cur.execute(
f"""
SELECT id, vector <-> %s::vector AS distance, payload
FROM {self.collection_name}
{filter_clause}
ORDER BY distance
LIMIT %s
""", (query, *filter_params, limit))
""",
(query, *filter_params, limit),
)
results = self.cur.fetchall()
return [OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results]
return [
OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results
]
def delete(self, vector_id):
"""
@@ -127,10 +135,12 @@ class PGVector(VectorStoreBase):
Args:
vector_id (str): ID of the vector to delete.
"""
self.cur.execute(f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,))
self.cur.execute(
f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,)
)
self.conn.commit()
def update(self, vector_id, vector = None, payload = None):
def update(self, vector_id, vector=None, payload=None):
"""
Update a vector and its payload.
@@ -140,9 +150,15 @@ class PGVector(VectorStoreBase):
payload (Dict, optional): Updated payload.
"""
if vector:
self.cur.execute(f"UPDATE {self.collection_name} SET vector = %s WHERE id = %s", (vector, vector_id))
self.cur.execute(
f"UPDATE {self.collection_name} SET vector = %s WHERE id = %s",
(vector, vector_id),
)
if payload:
self.cur.execute(f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s", (psycopg2.extras.Json(payload), vector_id))
self.cur.execute(
f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s",
(psycopg2.extras.Json(payload), vector_id),
)
self.conn.commit()
def get(self, vector_id) -> OutputData:
@@ -155,7 +171,10 @@ class PGVector(VectorStoreBase):
Returns:
OutputData: Retrieved vector.
"""
self.cur.execute(f"SELECT id, vector, payload FROM {self.collection_name} WHERE id = %s", (vector_id,))
self.cur.execute(
f"SELECT id, vector, payload FROM {self.collection_name} WHERE id = %s",
(vector_id,),
)
result = self.cur.fetchone()
if not result:
return None
@@ -168,11 +187,13 @@ class PGVector(VectorStoreBase):
Returns:
List[str]: List of collection names.
"""
self.cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'")
self.cur.execute(
"SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'"
)
return [row[0] for row in self.cur.fetchall()]
def delete_col(self):
""" Delete a collection. """
"""Delete a collection."""
self.cur.execute(f"DROP TABLE IF EXISTS {self.collection_name}")
self.conn.commit()
@@ -183,22 +204,21 @@ class PGVector(VectorStoreBase):
Returns:
Dict[str, Any]: Collection information.
"""
self.cur.execute(f"""
self.cur.execute(
f"""
SELECT
table_name,
(SELECT COUNT(*) FROM {self.collection_name}) as row_count,
(SELECT pg_size_pretty(pg_total_relation_size('{self.collection_name}'))) as total_size
FROM information_schema.tables
WHERE table_schema = 'public' AND table_name = %s
""", (self.collection_name,))
""",
(self.collection_name,),
)
result = self.cur.fetchone()
return {
"name": result[0],
"count": result[1],
"size": result[2]
}
return {"name": result[0], "count": result[1], "size": result[2]}
def list(self, filters = None, limit = 100):
def list(self, filters=None, limit=100):
"""
List all vectors in a collection.
@@ -214,10 +234,12 @@ class PGVector(VectorStoreBase):
if filters:
for k, v in filters.items():
filter_conditions.append(f"payload->>%s = %s")
filter_conditions.append("payload->>%s = %s")
filter_params.extend([k, str(v)])
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
filter_clause = (
"WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
)
query = f"""
SELECT id, vector, payload
@@ -235,7 +257,7 @@ class PGVector(VectorStoreBase):
"""
Close the database connection when the object is deleted.
"""
if hasattr(self, 'cur'):
if hasattr(self, "cur"):
self.cur.close()
if hasattr(self, 'conn'):
self.conn.close()
if hasattr(self, "conn"):
self.conn.close()

View File

@@ -28,7 +28,7 @@ class Qdrant(VectorStoreBase):
path: str = None,
url: str = None,
api_key: str = None,
on_disk: bool = False
on_disk: bool = False,
):
"""
Initialize the Qdrant vector store.
@@ -60,13 +60,15 @@ class Qdrant(VectorStoreBase):
if not on_disk:
if os.path.exists(path) and os.path.isdir(path):
shutil.rmtree(path)
self.client = QdrantClient(**params)
self.collection_name = collection_name
self.create_col(embedding_model_dims, on_disk)
def create_col(self, vector_size: int, on_disk: bool, distance: Distance = Distance.COSINE):
def create_col(
self, vector_size: int, on_disk: bool, distance: Distance = Distance.COSINE
):
"""
Create a new collection.
@@ -79,12 +81,16 @@ class Qdrant(VectorStoreBase):
response = self.list_cols()
for collection in response.collections:
if collection.name == self.collection_name:
logging.debug(f"Collection {self.collection_name} already exists. Skipping creation.")
logging.debug(
f"Collection {self.collection_name} already exists. Skipping creation."
)
return
self.client.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(size=vector_size, distance=distance, on_disk=on_disk),
vectors_config=VectorParams(
size=vector_size, distance=distance, on_disk=on_disk
),
)
def insert(self, vectors: list, payloads: list = None, ids: list = None):
@@ -202,7 +208,7 @@ class Qdrant(VectorStoreBase):
return self.client.get_collections()
def delete_col(self):
""" Delete a collection. """
"""Delete a collection."""
self.client.delete_collection(collection_name=self.collection_name)
def col_info(self) -> dict: