fix: update docs (#477)

This commit is contained in:
Taranjeet Singh
2023-08-24 14:46:15 -07:00
committed by GitHub
parent 9ba408086e
commit a6e4235bb0

View File

@@ -14,29 +14,6 @@ Embedchain is a framework to easily create LLM powered bots over any dataset. If
pip install embedchain
```
## 🔥 Latest
- **[2023/07/19]** Released support for 🦙 `llama2` model. Start creating your `llama2` based bots like this:
```python
import os
from embedchain import Llama2App
os.environ['REPLICATE_API_TOKEN'] = "REPLICATE API TOKEN"
zuck_bot = Llama2App()
# Embed your data
zuck_bot.add("https://www.youtube.com/watch?v=Ff4fRgnuFgQ")
zuck_bot.add("https://en.wikipedia.org/wiki/Mark_Zuckerberg")
# Nice, your bot is ready now. Start asking questions to your bot.
zuck_bot.query("Who is Mark Zuckerberg?")
# Answer: Mark Zuckerberg is an American internet entrepreneur and business magnate. He is the co-founder and CEO of Facebook.
```
## 🔍 Demo
Try out embedchain in your browser:
@@ -51,6 +28,16 @@ The documentation for embedchain can be found at [docs.embedchain.ai](https://do
Embedchain empowers you to create chatbot models similar to ChatGPT, using your own evolving dataset.
### Data Types Supported
* Youtube video
* PDF file
* Web page
* Sitemap
* Doc file
* Code documentation website loader
* Notion
### Queries
For example, you can use Embedchain to create an Elon Musk bot using the following code: