[Improvement] Parallelize loading of sitemap urls
This commit is contained in:
@@ -1,3 +1,4 @@
|
|||||||
|
import concurrent.futures
|
||||||
import hashlib
|
import hashlib
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
@@ -20,32 +21,38 @@ from embedchain.utils import is_readable
|
|||||||
@register_deserializable
|
@register_deserializable
|
||||||
class SitemapLoader(BaseLoader):
|
class SitemapLoader(BaseLoader):
|
||||||
def load_data(self, sitemap_url):
|
def load_data(self, sitemap_url):
|
||||||
"""
|
|
||||||
This method takes a sitemap URL as input and retrieves
|
|
||||||
all the URLs to use the WebPageLoader to load content
|
|
||||||
of each page.
|
|
||||||
"""
|
|
||||||
output = []
|
output = []
|
||||||
web_page_loader = WebPageLoader()
|
web_page_loader = WebPageLoader()
|
||||||
response = requests.get(sitemap_url)
|
response = requests.get(sitemap_url)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
|
|
||||||
soup = BeautifulSoup(response.text, "xml")
|
soup = BeautifulSoup(response.text, "xml")
|
||||||
|
|
||||||
links = [link.text for link in soup.find_all("loc") if link.parent.name == "url"]
|
links = [link.text for link in soup.find_all("loc") if link.parent.name == "url"]
|
||||||
if len(links) == 0:
|
if len(links) == 0:
|
||||||
# Get all <loc> tags as a fallback. This might include images.
|
|
||||||
links = [link.text for link in soup.find_all("loc")]
|
links = [link.text for link in soup.find_all("loc")]
|
||||||
|
|
||||||
doc_id = hashlib.sha256((" ".join(links) + sitemap_url).encode()).hexdigest()
|
doc_id = hashlib.sha256((" ".join(links) + sitemap_url).encode()).hexdigest()
|
||||||
|
|
||||||
for link in links:
|
def load_link(link):
|
||||||
try:
|
try:
|
||||||
each_load_data = web_page_loader.load_data(link)
|
each_load_data = web_page_loader.load_data(link)
|
||||||
if is_readable(each_load_data.get("data")[0].get("content")):
|
if is_readable(each_load_data.get("data")[0].get("content")):
|
||||||
output.append(each_load_data.get("data"))
|
return each_load_data.get("data")
|
||||||
else:
|
else:
|
||||||
logging.warning(f"Page is not readable (too many invalid characters): {link}")
|
logging.warning(f"Page is not readable (too many invalid characters): {link}")
|
||||||
except ParserRejectedMarkup as e:
|
except ParserRejectedMarkup as e:
|
||||||
logging.error(f"Failed to parse {link}: {e}")
|
logging.error(f"Failed to parse {link}: {e}")
|
||||||
return {"doc_id": doc_id, "data": [data[0] for data in output]}
|
return None
|
||||||
|
|
||||||
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||||
|
future_to_link = {executor.submit(load_link, link): link for link in links}
|
||||||
|
for future in concurrent.futures.as_completed(future_to_link):
|
||||||
|
link = future_to_link[future]
|
||||||
|
try:
|
||||||
|
data = future.result()
|
||||||
|
if data:
|
||||||
|
output.append(data)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error loading page {link}: {e}")
|
||||||
|
|
||||||
|
return {"doc_id": doc_id, "data": [data[0] for data in output if data]}
|
||||||
|
|||||||
@@ -158,7 +158,11 @@ class ChromaDB(BaseVectorDB):
|
|||||||
)
|
)
|
||||||
|
|
||||||
for i in range(0, len(documents), self.BATCH_SIZE):
|
for i in range(0, len(documents), self.BATCH_SIZE):
|
||||||
print("Inserting batches from {} to {} in chromadb".format(i, min(len(documents), i + self.BATCH_SIZE)))
|
print(
|
||||||
|
"Inserting batches from {} to {} in vector database.".format(
|
||||||
|
i, min(len(documents), i + self.BATCH_SIZE)
|
||||||
|
)
|
||||||
|
)
|
||||||
if skip_embedding:
|
if skip_embedding:
|
||||||
self.collection.add(
|
self.collection.add(
|
||||||
embeddings=embeddings[i : i + self.BATCH_SIZE],
|
embeddings=embeddings[i : i + self.BATCH_SIZE],
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "embedchain"
|
name = "embedchain"
|
||||||
version = "0.1.9"
|
version = "0.1.10"
|
||||||
description = "Data platform for LLMs - Load, index, retrieve and sync any unstructured data"
|
description = "Data platform for LLMs - Load, index, retrieve and sync any unstructured data"
|
||||||
authors = [
|
authors = [
|
||||||
"Taranjeet Singh <taranjeet@embedchain.ai>",
|
"Taranjeet Singh <taranjeet@embedchain.ai>",
|
||||||
|
|||||||
Reference in New Issue
Block a user