[Improvement] Parallelize loading of sitemap urls
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
import concurrent.futures
|
||||
import hashlib
|
||||
import logging
|
||||
|
||||
@@ -20,32 +21,38 @@ from embedchain.utils import is_readable
|
||||
@register_deserializable
|
||||
class SitemapLoader(BaseLoader):
|
||||
def load_data(self, sitemap_url):
|
||||
"""
|
||||
This method takes a sitemap URL as input and retrieves
|
||||
all the URLs to use the WebPageLoader to load content
|
||||
of each page.
|
||||
"""
|
||||
output = []
|
||||
web_page_loader = WebPageLoader()
|
||||
response = requests.get(sitemap_url)
|
||||
response.raise_for_status()
|
||||
|
||||
soup = BeautifulSoup(response.text, "xml")
|
||||
|
||||
links = [link.text for link in soup.find_all("loc") if link.parent.name == "url"]
|
||||
if len(links) == 0:
|
||||
# Get all <loc> tags as a fallback. This might include images.
|
||||
links = [link.text for link in soup.find_all("loc")]
|
||||
|
||||
doc_id = hashlib.sha256((" ".join(links) + sitemap_url).encode()).hexdigest()
|
||||
|
||||
for link in links:
|
||||
def load_link(link):
|
||||
try:
|
||||
each_load_data = web_page_loader.load_data(link)
|
||||
if is_readable(each_load_data.get("data")[0].get("content")):
|
||||
output.append(each_load_data.get("data"))
|
||||
return each_load_data.get("data")
|
||||
else:
|
||||
logging.warning(f"Page is not readable (too many invalid characters): {link}")
|
||||
except ParserRejectedMarkup as e:
|
||||
logging.error(f"Failed to parse {link}: {e}")
|
||||
return {"doc_id": doc_id, "data": [data[0] for data in output]}
|
||||
return None
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
future_to_link = {executor.submit(load_link, link): link for link in links}
|
||||
for future in concurrent.futures.as_completed(future_to_link):
|
||||
link = future_to_link[future]
|
||||
try:
|
||||
data = future.result()
|
||||
if data:
|
||||
output.append(data)
|
||||
except Exception as e:
|
||||
logging.error(f"Error loading page {link}: {e}")
|
||||
|
||||
return {"doc_id": doc_id, "data": [data[0] for data in output if data]}
|
||||
|
||||
@@ -158,7 +158,11 @@ class ChromaDB(BaseVectorDB):
|
||||
)
|
||||
|
||||
for i in range(0, len(documents), self.BATCH_SIZE):
|
||||
print("Inserting batches from {} to {} in chromadb".format(i, min(len(documents), i + self.BATCH_SIZE)))
|
||||
print(
|
||||
"Inserting batches from {} to {} in vector database.".format(
|
||||
i, min(len(documents), i + self.BATCH_SIZE)
|
||||
)
|
||||
)
|
||||
if skip_embedding:
|
||||
self.collection.add(
|
||||
embeddings=embeddings[i : i + self.BATCH_SIZE],
|
||||
|
||||
Reference in New Issue
Block a user