[Improvement] Parallelize loading of sitemap urls

This commit is contained in:
Deshraj Yadav
2023-11-13 12:53:34 -08:00
parent 1d31b8f7e4
commit a5bf8e9075
3 changed files with 23 additions and 12 deletions

View File

@@ -1,3 +1,4 @@
import concurrent.futures
import hashlib
import logging
@@ -20,32 +21,38 @@ from embedchain.utils import is_readable
@register_deserializable
class SitemapLoader(BaseLoader):
def load_data(self, sitemap_url):
"""
This method takes a sitemap URL as input and retrieves
all the URLs to use the WebPageLoader to load content
of each page.
"""
output = []
web_page_loader = WebPageLoader()
response = requests.get(sitemap_url)
response.raise_for_status()
soup = BeautifulSoup(response.text, "xml")
links = [link.text for link in soup.find_all("loc") if link.parent.name == "url"]
if len(links) == 0:
# Get all <loc> tags as a fallback. This might include images.
links = [link.text for link in soup.find_all("loc")]
doc_id = hashlib.sha256((" ".join(links) + sitemap_url).encode()).hexdigest()
for link in links:
def load_link(link):
try:
each_load_data = web_page_loader.load_data(link)
if is_readable(each_load_data.get("data")[0].get("content")):
output.append(each_load_data.get("data"))
return each_load_data.get("data")
else:
logging.warning(f"Page is not readable (too many invalid characters): {link}")
except ParserRejectedMarkup as e:
logging.error(f"Failed to parse {link}: {e}")
return {"doc_id": doc_id, "data": [data[0] for data in output]}
return None
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_link = {executor.submit(load_link, link): link for link in links}
for future in concurrent.futures.as_completed(future_to_link):
link = future_to_link[future]
try:
data = future.result()
if data:
output.append(data)
except Exception as e:
logging.error(f"Error loading page {link}: {e}")
return {"doc_id": doc_id, "data": [data[0] for data in output if data]}

View File

@@ -158,7 +158,11 @@ class ChromaDB(BaseVectorDB):
)
for i in range(0, len(documents), self.BATCH_SIZE):
print("Inserting batches from {} to {} in chromadb".format(i, min(len(documents), i + self.BATCH_SIZE)))
print(
"Inserting batches from {} to {} in vector database.".format(
i, min(len(documents), i + self.BATCH_SIZE)
)
)
if skip_embedding:
self.collection.add(
embeddings=embeddings[i : i + self.BATCH_SIZE],