Update Mem0 LLM docs (#1497)

This commit is contained in:
Dev Khant
2024-07-19 01:36:40 +05:30
committed by GitHub
parent 40c9abe484
commit a546a9f56a
2 changed files with 67 additions and 5 deletions

View File

@@ -12,6 +12,8 @@ Mem0 includes built-in support for various popular large language models. Memory
<Card title="Together" href="#together"></Card>
<Card title="AWS Bedrock" href="#aws_bedrock"></Card>
<Card title="Litellm" href="#litellm"></Card>
<Card title="Google AI" href="#google-ai"></Card>
<Card title="Anthropic" href="#anthropic"></Card>
</CardGroup>
## OpenAI
@@ -24,7 +26,7 @@ Once you have obtained the key, you can use it like this:
import os
from mem0 import Memory
os.environ['OPENAI_API_KEY'] = 'xxx'
os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"llm": {
@@ -51,7 +53,7 @@ In order to use LLMs from Groq, go to their [platform](https://console.groq.com/
import os
from mem0 import Memory
os.environ['GROQ_API_KEY'] = 'xxx'
os.environ["GROQ_API_KEY"] = "your-api-key"
config = {
"llm": {
@@ -78,7 +80,7 @@ Once you have obtained the key, you can use it like this:
import os
from mem0 import Memory
os.environ['TOGETHER_API_KEY'] = 'xxx'
os.environ["TOGETHER_API_KEY"] = "your-api-key"
config = {
"llm": {
@@ -133,6 +135,8 @@ m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category"
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
@@ -148,3 +152,55 @@ m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Google AI
To use Google AI model, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey)
Once you have obtained the key, you can use it like this:
```python
import os
from mem0 import Memory
os.environ["GEMINI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "gemini/gemini-pro",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
## Anthropic
To use anthropic's model, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
```python
import os
from mem0 import Memory
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "litellm",
"config": {
"model": "claude-3-opus-20240229",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```

View File

@@ -167,3 +167,9 @@ app.add("https://www.forbes.com/profile/elon-musk")
app.chat("What is the net worth of Elon Musk?")
```
## How Mem0 works:
- Mem0 saves context derived from each user question into its memory.
- When a user poses a new question, Mem0 retrieves relevant previous memories.
- The `top_k` parameter in the memory configuration specifies the number of top memories to consider during retrieval.
- Mem0 generates the final response by integrating the user's question, context from the data source, and the relevant memories.