# feat: Add Group Chat Memory Feature support to Python SDK enhancing mem0 (#2669)
This commit is contained in:
@@ -203,6 +203,7 @@
|
||||
"examples/aws_example",
|
||||
"examples/mem0-demo",
|
||||
"examples/ai_companion_js",
|
||||
"examples/collaborative-task-agent",
|
||||
"examples/eliza_os",
|
||||
"examples/mem0-mastra",
|
||||
"examples/mem0-with-ollama",
|
||||
|
||||
273
docs/examples/collaborative-task-agent.mdx
Normal file
273
docs/examples/collaborative-task-agent.mdx
Normal file
@@ -0,0 +1,273 @@
|
||||
---
|
||||
title: Collaborative Task Agent
|
||||
---
|
||||
|
||||
<Snippet file="paper-release.mdx" />
|
||||
|
||||
# Building a Collaborative Task Management System with Mem0
|
||||
|
||||
## Overview
|
||||
|
||||
Mem0's advanced attribution capabilities now allow you to create multi-user , multi-agent collaborative or chat systems by attaching an **`actor_id`** to each memory. By setting the users's name in `message["name"]`, you can build powerful team collaboration tools where contributions are properly attributed to their authors.
|
||||
|
||||
When using `infer=False`, messages are stored exactly as provided while still preserving actor metadata—making this approach ideal for:
|
||||
|
||||
- Multi-user chat applications
|
||||
- Team brainstorming sessions
|
||||
- Any collaborative "shared canvas" scenario
|
||||
|
||||
> **ℹ️ Note**
|
||||
> Actor attribution works today with `infer=False` mode.
|
||||
> Full attribution support for the fact-extraction pipeline (`infer=True`) will be available in an upcoming release.
|
||||
|
||||
## Key Concepts
|
||||
|
||||
### Session Context
|
||||
|
||||
Session context is defined by one of three identifiers:
|
||||
- **`user_id`**: Ideal for personal memory or user-specific data
|
||||
- **`agent_id`**: Used for agent-specific memory storage
|
||||
- **`run_id`**: Best for shared task contexts or collaborative spaces
|
||||
|
||||
Developers choose which identifier best represents their use case. In this example, we use `run_id` to create a shared project space where all team members can collaborate.
|
||||
|
||||
### Actor Attribution
|
||||
|
||||
Actor attribution is derived internally from:
|
||||
- **`message["name"]`**: Becomes the `actor_id` in the memory's metadata
|
||||
- **`message["role"]`**: Stored as the `role` in the memory's metadata
|
||||
|
||||
Note that `actor_id` is not a top-level parameter for the `add()` method, but is instead extracted from the message itself.
|
||||
|
||||
### Memory Filtering
|
||||
|
||||
When retrieving memories, you can filter by actor using the `filters` parameter:
|
||||
```python
|
||||
# Get all memories from a specific actor
|
||||
memories = mem.search("query", run_id="landing-v1", filters={"actor_id": "alice"})
|
||||
|
||||
# Get all memories from all team members
|
||||
all_memories = mem.get_all(run_id="landing-v1")
|
||||
```
|
||||
|
||||
## Upcoming Features
|
||||
|
||||
Mem0 will soon support full actor attribution with `infer=True`, enabling automatic extraction of actor names during the fact extraction process. This enhancement will allow the system to:
|
||||
|
||||
1. Maintain attribution information when converting raw messages to semantic facts
|
||||
2. Associate extracted knowledge with its original source
|
||||
3. Track the provenance of information across complex interactions
|
||||
|
||||
Mem0's actor attribution system can power a wide range of advanced conversation and agent scenarios:
|
||||
|
||||
### Conversation Scenarios
|
||||
|
||||
| Scenario | Description | Implementation |
|
||||
|----------|-------------|----------------|
|
||||
| **Simple Chat** | One-to-one conversation between user and assistant
|
||||
| **Multi-User Chat** | Multiple users conversing with a single assistant
|
||||
| **Multi-Agent Chat** | Multiple AI assistants with distinct personas or capabilities
|
||||
| **Group Chat** | Complex interactions between multiple humans and assistants
|
||||
### Agent-Based Applications
|
||||
|
||||
The collaborative task agent uses a simple but powerful architecture:
|
||||
|
||||
* A **shared project space** identified by a single `run_id`
|
||||
* Each participant (user or AI) writes with their own **unique name** which becomes the `actor_id` in Mem0
|
||||
* All memories can be searched, filtered, or visualized by actor
|
||||
|
||||
|
||||
## Implementation
|
||||
|
||||
Below is a complete implementation of a collaborative task agent that demonstrates how to build team-oriented applications with Mem0.
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
from mem0 import Memory
|
||||
import os
|
||||
from datetime import datetime # For parsing and formatting timestamps
|
||||
|
||||
# Configuration
|
||||
os.environ["OPENAI_API_KEY"] = "sk-your-key" # Replace with your key
|
||||
client = OpenAI()
|
||||
|
||||
RUN_ID = "landing-v1" # Shared project context
|
||||
APP_ID = "task-agent-demo" # Application identifier
|
||||
|
||||
# Initialize Mem0 with default settings (local Qdrant + SQLite)
|
||||
# Ensure the path is writable if not using in-memory
|
||||
mem = Memory()
|
||||
|
||||
class TaskAgent:
|
||||
def __init__(self, run_id: str):
|
||||
"""
|
||||
Initialize a collaborative task agent for a specific project.
|
||||
|
||||
Args:
|
||||
run_id: Unique identifier for this project workspace
|
||||
"""
|
||||
self.run_id = run_id
|
||||
self.mem = mem
|
||||
|
||||
def add_message(self, role: str, speaker: str, content: str):
|
||||
"""
|
||||
Store a chat message with proper attribution.
|
||||
|
||||
Args:
|
||||
role: Message role (user, assistant, system)
|
||||
speaker: Name of the person/agent speaking (becomes actor_id)
|
||||
content: The actual message content
|
||||
"""
|
||||
msg = {"role": role, "name": speaker, "content": content}
|
||||
# Ensure created_at is stored. Mem0 does this by default.
|
||||
self.mem.add(
|
||||
[msg],
|
||||
run_id=self.run_id,
|
||||
metadata={"app_id": APP_ID},
|
||||
infer=False
|
||||
)
|
||||
|
||||
def brainstorm(self, prompt: str, speaker: str = "assistant", search_limit: int = 10, exclude_assistant_context: bool = False):
|
||||
"""
|
||||
Generate a response based on project context and team input.
|
||||
|
||||
Args:
|
||||
prompt: The question or task to address
|
||||
speaker: Name to attribute the assistant's response to
|
||||
search_limit: Max number of memories to retrieve for context
|
||||
exclude_assistant_context: If True, filters out assistant's own messages from context
|
||||
|
||||
Returns:
|
||||
str: The assistant's response
|
||||
"""
|
||||
# Retrieve relevant context from team's shared memory
|
||||
# Fetch a bit more if we plan to filter, to ensure we still get enough relevant user messages.
|
||||
fetch_limit = search_limit + 5 if exclude_assistant_context else search_limit
|
||||
retrieved_memories = self.mem.search(prompt, run_id=self.run_id, limit=fetch_limit)["results"]
|
||||
|
||||
# Client-side sorting by 'created_at' to prioritize recent memories for context.
|
||||
# Note: Timestamps should be in a directly comparable format or parsed.
|
||||
# Mem0 stores created_at as ISO format strings, which are comparable.
|
||||
retrieved_memories.sort(key=lambda m: m.get('created_at', ''), reverse=True)
|
||||
|
||||
ctx_for_llm = []
|
||||
if exclude_assistant_context:
|
||||
for m in retrieved_memories:
|
||||
if m.get("role") != "assistant":
|
||||
ctx_for_llm.append(m)
|
||||
if len(ctx_for_llm) >= search_limit:
|
||||
break
|
||||
else:
|
||||
ctx_for_llm = retrieved_memories[:search_limit]
|
||||
|
||||
context_parts = []
|
||||
for m in ctx_for_llm:
|
||||
actor = m.get('actor_id') or "Unknown"
|
||||
# Attempt to parse and format the timestamp for better readability
|
||||
try:
|
||||
ts_iso = m.get('created_at', '')
|
||||
if ts_iso:
|
||||
ts_obj = datetime.fromisoformat(ts_iso.replace('Z', '+00:00')) # Handle Zulu time
|
||||
formatted_ts = ts_obj.strftime('%Y-%m-%d %H:%M:%S %Z')
|
||||
else:
|
||||
formatted_ts = "Timestamp N/A"
|
||||
except ValueError:
|
||||
formatted_ts = ts_iso # Fallback to raw string if parsing fails
|
||||
context_parts.append(f"- {m['memory']} (by {actor} at {formatted_ts})")
|
||||
|
||||
context_str = "\n".join(context_parts)
|
||||
|
||||
# Generate response with context-aware prompting
|
||||
sys_prompt = "You are the team's project assistant. Use the provided memory context, paying attention to timestamps for recency, to answer the user's query or perform the task."
|
||||
user_prompt_with_context = f"Query: {prompt}\n\nRelevant Context (most recent first):\n{context_str}"
|
||||
|
||||
msgs = [
|
||||
{"role": "system", "content": sys_prompt},
|
||||
{"role": "user", "content": user_prompt_with_context}
|
||||
]
|
||||
|
||||
reply = client.chat.completions.create(
|
||||
model="gpt-4o-mini",
|
||||
messages=msgs
|
||||
).choices[0].message.content.strip()
|
||||
|
||||
# Store the assistant's response with attribution
|
||||
self.add_message("assistant", speaker, reply)
|
||||
return reply
|
||||
|
||||
def dump(self, sort_by_time: bool = True, group_by_speaker: bool = False):
|
||||
"""
|
||||
Display all messages in the shared project space with attribution.
|
||||
Can be sorted by time and/or grouped by speaker.
|
||||
"""
|
||||
results = self.mem.get_all(run_id=self.run_id)["results"]
|
||||
|
||||
if not results:
|
||||
print("No memories found for this run.")
|
||||
return
|
||||
|
||||
# Sort by 'created_at' if requested
|
||||
if sort_by_time:
|
||||
results.sort(key=lambda m: m.get('created_at', ''))
|
||||
print(f"\n--- Project memory (run_id: {self.run_id}, sorted by time) ---")
|
||||
else:
|
||||
print(f"\n--- Project memory (run_id: {self.run_id}) ---")
|
||||
|
||||
if group_by_speaker:
|
||||
from collections import defaultdict
|
||||
grouped_memories = defaultdict(list)
|
||||
for m in results: # Use already potentially sorted results
|
||||
grouped_memories[m.get("actor_id") or "Unknown"].append(m)
|
||||
|
||||
for speaker, mem_list in grouped_memories.items():
|
||||
print(f"\n=== Speaker: {speaker} ===")
|
||||
# If not already sorted by time globally, sort within group
|
||||
# If already sorted globally, this re-sort is redundant unless different key.
|
||||
# For simplicity, if sort_by_time was true, list is already sorted.
|
||||
for m_item in mem_list:
|
||||
timestamp_str = m_item.get('created_at', 'Timestamp N/A')
|
||||
try:
|
||||
# Basic parsing for display, adjust as needed
|
||||
dt_obj = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
||||
formatted_time = dt_obj.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except ValueError:
|
||||
formatted_time = timestamp_str # Fallback
|
||||
print(f"[{formatted_time:19}] {m_item['memory']}")
|
||||
else: # Not grouping by speaker
|
||||
for m in results:
|
||||
who = m.get("actor_id") or "Unknown"
|
||||
timestamp_str = m.get('created_at', 'Timestamp N/A')
|
||||
try:
|
||||
dt_obj = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
||||
formatted_time = dt_obj.strftime('%Y-%m-%d %H:%M:%S')
|
||||
except ValueError:
|
||||
formatted_time = timestamp_str # Fallback
|
||||
print(f"[{formatted_time:19}][{who:8}] {m['memory']}")
|
||||
|
||||
# Demo Usage
|
||||
agent = TaskAgent(RUN_ID)
|
||||
|
||||
# Team collaboration session
|
||||
agent.add_message("user", "alice", "Let's list tasks for the new landing page.")
|
||||
agent.add_message("user", "bob", "I'll own the hero section copy. Maybe tomorrow.")
|
||||
agent.add_message("user", "carol", "I'll choose three product screenshots later today.")
|
||||
agent.add_message("user", "alice", "Actually, I will work on the hero section copy today.")
|
||||
|
||||
|
||||
print("\nAssistant brainstorm reply (default settings):\n")
|
||||
print(agent.brainstorm("What are the current open tasks related to the hero section?"))
|
||||
|
||||
print("\nAssistant brainstorm reply (excluding its own prior context):\n")
|
||||
print(agent.brainstorm("Summarize what Alice is working on.", exclude_assistant_context=True))
|
||||
|
||||
|
||||
print("\n--- Dump (sorted by time by default) ---")
|
||||
agent.dump()
|
||||
|
||||
print("\n--- Dump (grouped by speaker, also sorted by time globally) ---")
|
||||
agent.dump(group_by_speaker=True)
|
||||
|
||||
print("\n--- Dump (default order, not sorted by time explicitly by dump) ---")
|
||||
agent.dump(sort_by_time=False)
|
||||
|
||||
```
|
||||
1192
mem0/memory/main.py
1192
mem0/memory/main.py
File diff suppressed because it is too large
Load Diff
@@ -1,144 +1,160 @@
|
||||
import sqlite3
|
||||
import threading
|
||||
import uuid
|
||||
import logging
|
||||
from typing import List, Dict, Any, Optional
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SQLiteManager:
|
||||
def __init__(self, db_path=":memory:"):
|
||||
self.connection = sqlite3.connect(db_path, check_same_thread=False)
|
||||
def __init__(self, db_path: str = ":memory:"):
|
||||
self.db_path = db_path
|
||||
self.connection = sqlite3.connect(self.db_path, check_same_thread=False)
|
||||
self._lock = threading.Lock()
|
||||
self._migrate_history_table()
|
||||
self._create_history_table()
|
||||
|
||||
def _migrate_history_table(self):
|
||||
with self._lock:
|
||||
with self.connection:
|
||||
cursor = self.connection.cursor()
|
||||
def _migrate_history_table(self) -> None:
|
||||
"""
|
||||
If a pre-existing history table had the old group-chat columns,
|
||||
rename it, create the new schema, copy the intersecting data, then
|
||||
drop the old table.
|
||||
"""
|
||||
with self._lock, self.connection:
|
||||
cur = self.connection.cursor()
|
||||
cur.execute(
|
||||
"SELECT name FROM sqlite_master WHERE type='table' AND name='history'"
|
||||
)
|
||||
if cur.fetchone() is None:
|
||||
return # nothing to migrate
|
||||
|
||||
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='history'")
|
||||
table_exists = cursor.fetchone() is not None
|
||||
cur.execute("PRAGMA table_info(history)")
|
||||
old_cols = {row[1] for row in cur.fetchall()}
|
||||
|
||||
if table_exists:
|
||||
# Get the current schema of the history table
|
||||
cursor.execute("PRAGMA table_info(history)")
|
||||
current_schema = {row[1]: row[2] for row in cursor.fetchall()}
|
||||
expected_cols = {
|
||||
"id",
|
||||
"memory_id",
|
||||
"old_memory",
|
||||
"new_memory",
|
||||
"event",
|
||||
"created_at",
|
||||
"updated_at",
|
||||
"is_deleted",
|
||||
"actor_id",
|
||||
"role",
|
||||
}
|
||||
|
||||
# Define the expected schema
|
||||
expected_schema = {
|
||||
"id": "TEXT",
|
||||
"memory_id": "TEXT",
|
||||
"old_memory": "TEXT",
|
||||
"new_memory": "TEXT",
|
||||
"new_value": "TEXT",
|
||||
"event": "TEXT",
|
||||
"created_at": "DATETIME",
|
||||
"updated_at": "DATETIME",
|
||||
"is_deleted": "INTEGER",
|
||||
}
|
||||
if old_cols == expected_cols:
|
||||
return
|
||||
|
||||
# Check if the schemas are the same
|
||||
if current_schema != expected_schema:
|
||||
# Rename the old table
|
||||
cursor.execute("ALTER TABLE history RENAME TO old_history")
|
||||
logger.info("Migrating history table to new schema (no convo columns).")
|
||||
cur.execute("ALTER TABLE history RENAME TO history_old")
|
||||
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS history (
|
||||
id TEXT PRIMARY KEY,
|
||||
memory_id TEXT,
|
||||
old_memory TEXT,
|
||||
new_memory TEXT,
|
||||
new_value TEXT,
|
||||
event TEXT,
|
||||
created_at DATETIME,
|
||||
updated_at DATETIME,
|
||||
is_deleted INTEGER
|
||||
)
|
||||
"""
|
||||
)
|
||||
self._create_history_table()
|
||||
|
||||
# Copy data from the old table to the new table
|
||||
cursor.execute(
|
||||
"""
|
||||
INSERT INTO history (id, memory_id, old_memory, new_memory, new_value, event, created_at, updated_at, is_deleted)
|
||||
SELECT id, memory_id, prev_value, new_value, new_value, event, timestamp, timestamp, is_deleted
|
||||
FROM old_history
|
||||
""" # noqa: E501
|
||||
)
|
||||
intersecting = list(expected_cols & old_cols)
|
||||
cols_csv = ", ".join(intersecting)
|
||||
cur.execute(
|
||||
f"INSERT INTO history ({cols_csv}) SELECT {cols_csv} FROM history_old"
|
||||
)
|
||||
cur.execute("DROP TABLE history_old")
|
||||
|
||||
cursor.execute("DROP TABLE old_history")
|
||||
|
||||
self.connection.commit()
|
||||
|
||||
def _create_history_table(self):
|
||||
with self._lock:
|
||||
with self.connection:
|
||||
self.connection.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS history (
|
||||
id TEXT PRIMARY KEY,
|
||||
memory_id TEXT,
|
||||
old_memory TEXT,
|
||||
new_memory TEXT,
|
||||
new_value TEXT,
|
||||
event TEXT,
|
||||
created_at DATETIME,
|
||||
updated_at DATETIME,
|
||||
is_deleted INTEGER
|
||||
)
|
||||
def _create_history_table(self) -> None:
|
||||
with self._lock, self.connection:
|
||||
self.connection.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS history (
|
||||
id TEXT PRIMARY KEY,
|
||||
memory_id TEXT,
|
||||
old_memory TEXT,
|
||||
new_memory TEXT,
|
||||
event TEXT,
|
||||
created_at DATETIME,
|
||||
updated_at DATETIME,
|
||||
is_deleted INTEGER,
|
||||
actor_id TEXT,
|
||||
role TEXT
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
def add_history(
|
||||
self,
|
||||
memory_id,
|
||||
old_memory,
|
||||
new_memory,
|
||||
event,
|
||||
created_at=None,
|
||||
updated_at=None,
|
||||
is_deleted=0,
|
||||
):
|
||||
with self._lock:
|
||||
with self.connection:
|
||||
self.connection.execute(
|
||||
"""
|
||||
INSERT INTO history (id, memory_id, old_memory, new_memory, event, created_at, updated_at, is_deleted)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
|
||||
""",
|
||||
(
|
||||
str(uuid.uuid4()),
|
||||
memory_id,
|
||||
old_memory,
|
||||
new_memory,
|
||||
event,
|
||||
created_at,
|
||||
updated_at,
|
||||
is_deleted,
|
||||
),
|
||||
)
|
||||
|
||||
def get_history(self, memory_id):
|
||||
with self._lock:
|
||||
cursor = self.connection.execute(
|
||||
memory_id: str,
|
||||
old_memory: Optional[str],
|
||||
new_memory: Optional[str],
|
||||
event: str,
|
||||
*,
|
||||
created_at: Optional[str] = None,
|
||||
updated_at: Optional[str] = None,
|
||||
is_deleted: int = 0,
|
||||
actor_id: Optional[str] = None,
|
||||
role: Optional[str] = None,
|
||||
) -> None:
|
||||
with self._lock, self.connection:
|
||||
self.connection.execute(
|
||||
"""
|
||||
SELECT id, memory_id, old_memory, new_memory, event, created_at, updated_at
|
||||
INSERT INTO history (
|
||||
id, memory_id, old_memory, new_memory, event,
|
||||
created_at, updated_at, is_deleted, actor_id, role
|
||||
)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
""",
|
||||
(
|
||||
str(uuid.uuid4()),
|
||||
memory_id,
|
||||
old_memory,
|
||||
new_memory,
|
||||
event,
|
||||
created_at,
|
||||
updated_at,
|
||||
is_deleted,
|
||||
actor_id,
|
||||
role,
|
||||
),
|
||||
)
|
||||
|
||||
def get_history(self, memory_id: str) -> List[Dict[str, Any]]:
|
||||
with self._lock:
|
||||
cur = self.connection.execute(
|
||||
"""
|
||||
SELECT id, memory_id, old_memory, new_memory, event,
|
||||
created_at, updated_at, is_deleted, actor_id, role
|
||||
FROM history
|
||||
WHERE memory_id = ?
|
||||
ORDER BY updated_at ASC
|
||||
ORDER BY created_at ASC, DATETIME(updated_at) ASC
|
||||
""",
|
||||
(memory_id,),
|
||||
)
|
||||
rows = cursor.fetchall()
|
||||
return [
|
||||
{
|
||||
"id": row[0],
|
||||
"memory_id": row[1],
|
||||
"old_memory": row[2],
|
||||
"new_memory": row[3],
|
||||
"event": row[4],
|
||||
"created_at": row[5],
|
||||
"updated_at": row[6],
|
||||
}
|
||||
for row in rows
|
||||
]
|
||||
rows = cur.fetchall()
|
||||
|
||||
return [
|
||||
{
|
||||
"id": r[0],
|
||||
"memory_id": r[1],
|
||||
"old_memory": r[2],
|
||||
"new_memory": r[3],
|
||||
"event": r[4],
|
||||
"created_at": r[5],
|
||||
"updated_at": r[6],
|
||||
"is_deleted": bool(r[7]),
|
||||
"actor_id": r[8],
|
||||
"role": r[9],
|
||||
}
|
||||
for r in rows
|
||||
]
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Drop and recreate the history table."""
|
||||
with self._lock, self.connection:
|
||||
self.connection.execute("DROP TABLE IF EXISTS history")
|
||||
self._create_history_table()
|
||||
|
||||
def close(self) -> None:
|
||||
if self.connection:
|
||||
self.connection.close()
|
||||
self.connection = None
|
||||
|
||||
def __del__(self):
|
||||
self.close()
|
||||
|
||||
Reference in New Issue
Block a user