# feat: Add Group Chat Memory Feature support to Python SDK enhancing mem0 (#2669)
This commit is contained in:
@@ -203,6 +203,7 @@
|
|||||||
"examples/aws_example",
|
"examples/aws_example",
|
||||||
"examples/mem0-demo",
|
"examples/mem0-demo",
|
||||||
"examples/ai_companion_js",
|
"examples/ai_companion_js",
|
||||||
|
"examples/collaborative-task-agent",
|
||||||
"examples/eliza_os",
|
"examples/eliza_os",
|
||||||
"examples/mem0-mastra",
|
"examples/mem0-mastra",
|
||||||
"examples/mem0-with-ollama",
|
"examples/mem0-with-ollama",
|
||||||
|
|||||||
273
docs/examples/collaborative-task-agent.mdx
Normal file
273
docs/examples/collaborative-task-agent.mdx
Normal file
@@ -0,0 +1,273 @@
|
|||||||
|
---
|
||||||
|
title: Collaborative Task Agent
|
||||||
|
---
|
||||||
|
|
||||||
|
<Snippet file="paper-release.mdx" />
|
||||||
|
|
||||||
|
# Building a Collaborative Task Management System with Mem0
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
Mem0's advanced attribution capabilities now allow you to create multi-user , multi-agent collaborative or chat systems by attaching an **`actor_id`** to each memory. By setting the users's name in `message["name"]`, you can build powerful team collaboration tools where contributions are properly attributed to their authors.
|
||||||
|
|
||||||
|
When using `infer=False`, messages are stored exactly as provided while still preserving actor metadata—making this approach ideal for:
|
||||||
|
|
||||||
|
- Multi-user chat applications
|
||||||
|
- Team brainstorming sessions
|
||||||
|
- Any collaborative "shared canvas" scenario
|
||||||
|
|
||||||
|
> **ℹ️ Note**
|
||||||
|
> Actor attribution works today with `infer=False` mode.
|
||||||
|
> Full attribution support for the fact-extraction pipeline (`infer=True`) will be available in an upcoming release.
|
||||||
|
|
||||||
|
## Key Concepts
|
||||||
|
|
||||||
|
### Session Context
|
||||||
|
|
||||||
|
Session context is defined by one of three identifiers:
|
||||||
|
- **`user_id`**: Ideal for personal memory or user-specific data
|
||||||
|
- **`agent_id`**: Used for agent-specific memory storage
|
||||||
|
- **`run_id`**: Best for shared task contexts or collaborative spaces
|
||||||
|
|
||||||
|
Developers choose which identifier best represents their use case. In this example, we use `run_id` to create a shared project space where all team members can collaborate.
|
||||||
|
|
||||||
|
### Actor Attribution
|
||||||
|
|
||||||
|
Actor attribution is derived internally from:
|
||||||
|
- **`message["name"]`**: Becomes the `actor_id` in the memory's metadata
|
||||||
|
- **`message["role"]`**: Stored as the `role` in the memory's metadata
|
||||||
|
|
||||||
|
Note that `actor_id` is not a top-level parameter for the `add()` method, but is instead extracted from the message itself.
|
||||||
|
|
||||||
|
### Memory Filtering
|
||||||
|
|
||||||
|
When retrieving memories, you can filter by actor using the `filters` parameter:
|
||||||
|
```python
|
||||||
|
# Get all memories from a specific actor
|
||||||
|
memories = mem.search("query", run_id="landing-v1", filters={"actor_id": "alice"})
|
||||||
|
|
||||||
|
# Get all memories from all team members
|
||||||
|
all_memories = mem.get_all(run_id="landing-v1")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Upcoming Features
|
||||||
|
|
||||||
|
Mem0 will soon support full actor attribution with `infer=True`, enabling automatic extraction of actor names during the fact extraction process. This enhancement will allow the system to:
|
||||||
|
|
||||||
|
1. Maintain attribution information when converting raw messages to semantic facts
|
||||||
|
2. Associate extracted knowledge with its original source
|
||||||
|
3. Track the provenance of information across complex interactions
|
||||||
|
|
||||||
|
Mem0's actor attribution system can power a wide range of advanced conversation and agent scenarios:
|
||||||
|
|
||||||
|
### Conversation Scenarios
|
||||||
|
|
||||||
|
| Scenario | Description | Implementation |
|
||||||
|
|----------|-------------|----------------|
|
||||||
|
| **Simple Chat** | One-to-one conversation between user and assistant
|
||||||
|
| **Multi-User Chat** | Multiple users conversing with a single assistant
|
||||||
|
| **Multi-Agent Chat** | Multiple AI assistants with distinct personas or capabilities
|
||||||
|
| **Group Chat** | Complex interactions between multiple humans and assistants
|
||||||
|
### Agent-Based Applications
|
||||||
|
|
||||||
|
The collaborative task agent uses a simple but powerful architecture:
|
||||||
|
|
||||||
|
* A **shared project space** identified by a single `run_id`
|
||||||
|
* Each participant (user or AI) writes with their own **unique name** which becomes the `actor_id` in Mem0
|
||||||
|
* All memories can be searched, filtered, or visualized by actor
|
||||||
|
|
||||||
|
|
||||||
|
## Implementation
|
||||||
|
|
||||||
|
Below is a complete implementation of a collaborative task agent that demonstrates how to build team-oriented applications with Mem0.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from openai import OpenAI
|
||||||
|
from mem0 import Memory
|
||||||
|
import os
|
||||||
|
from datetime import datetime # For parsing and formatting timestamps
|
||||||
|
|
||||||
|
# Configuration
|
||||||
|
os.environ["OPENAI_API_KEY"] = "sk-your-key" # Replace with your key
|
||||||
|
client = OpenAI()
|
||||||
|
|
||||||
|
RUN_ID = "landing-v1" # Shared project context
|
||||||
|
APP_ID = "task-agent-demo" # Application identifier
|
||||||
|
|
||||||
|
# Initialize Mem0 with default settings (local Qdrant + SQLite)
|
||||||
|
# Ensure the path is writable if not using in-memory
|
||||||
|
mem = Memory()
|
||||||
|
|
||||||
|
class TaskAgent:
|
||||||
|
def __init__(self, run_id: str):
|
||||||
|
"""
|
||||||
|
Initialize a collaborative task agent for a specific project.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
run_id: Unique identifier for this project workspace
|
||||||
|
"""
|
||||||
|
self.run_id = run_id
|
||||||
|
self.mem = mem
|
||||||
|
|
||||||
|
def add_message(self, role: str, speaker: str, content: str):
|
||||||
|
"""
|
||||||
|
Store a chat message with proper attribution.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
role: Message role (user, assistant, system)
|
||||||
|
speaker: Name of the person/agent speaking (becomes actor_id)
|
||||||
|
content: The actual message content
|
||||||
|
"""
|
||||||
|
msg = {"role": role, "name": speaker, "content": content}
|
||||||
|
# Ensure created_at is stored. Mem0 does this by default.
|
||||||
|
self.mem.add(
|
||||||
|
[msg],
|
||||||
|
run_id=self.run_id,
|
||||||
|
metadata={"app_id": APP_ID},
|
||||||
|
infer=False
|
||||||
|
)
|
||||||
|
|
||||||
|
def brainstorm(self, prompt: str, speaker: str = "assistant", search_limit: int = 10, exclude_assistant_context: bool = False):
|
||||||
|
"""
|
||||||
|
Generate a response based on project context and team input.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt: The question or task to address
|
||||||
|
speaker: Name to attribute the assistant's response to
|
||||||
|
search_limit: Max number of memories to retrieve for context
|
||||||
|
exclude_assistant_context: If True, filters out assistant's own messages from context
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The assistant's response
|
||||||
|
"""
|
||||||
|
# Retrieve relevant context from team's shared memory
|
||||||
|
# Fetch a bit more if we plan to filter, to ensure we still get enough relevant user messages.
|
||||||
|
fetch_limit = search_limit + 5 if exclude_assistant_context else search_limit
|
||||||
|
retrieved_memories = self.mem.search(prompt, run_id=self.run_id, limit=fetch_limit)["results"]
|
||||||
|
|
||||||
|
# Client-side sorting by 'created_at' to prioritize recent memories for context.
|
||||||
|
# Note: Timestamps should be in a directly comparable format or parsed.
|
||||||
|
# Mem0 stores created_at as ISO format strings, which are comparable.
|
||||||
|
retrieved_memories.sort(key=lambda m: m.get('created_at', ''), reverse=True)
|
||||||
|
|
||||||
|
ctx_for_llm = []
|
||||||
|
if exclude_assistant_context:
|
||||||
|
for m in retrieved_memories:
|
||||||
|
if m.get("role") != "assistant":
|
||||||
|
ctx_for_llm.append(m)
|
||||||
|
if len(ctx_for_llm) >= search_limit:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
ctx_for_llm = retrieved_memories[:search_limit]
|
||||||
|
|
||||||
|
context_parts = []
|
||||||
|
for m in ctx_for_llm:
|
||||||
|
actor = m.get('actor_id') or "Unknown"
|
||||||
|
# Attempt to parse and format the timestamp for better readability
|
||||||
|
try:
|
||||||
|
ts_iso = m.get('created_at', '')
|
||||||
|
if ts_iso:
|
||||||
|
ts_obj = datetime.fromisoformat(ts_iso.replace('Z', '+00:00')) # Handle Zulu time
|
||||||
|
formatted_ts = ts_obj.strftime('%Y-%m-%d %H:%M:%S %Z')
|
||||||
|
else:
|
||||||
|
formatted_ts = "Timestamp N/A"
|
||||||
|
except ValueError:
|
||||||
|
formatted_ts = ts_iso # Fallback to raw string if parsing fails
|
||||||
|
context_parts.append(f"- {m['memory']} (by {actor} at {formatted_ts})")
|
||||||
|
|
||||||
|
context_str = "\n".join(context_parts)
|
||||||
|
|
||||||
|
# Generate response with context-aware prompting
|
||||||
|
sys_prompt = "You are the team's project assistant. Use the provided memory context, paying attention to timestamps for recency, to answer the user's query or perform the task."
|
||||||
|
user_prompt_with_context = f"Query: {prompt}\n\nRelevant Context (most recent first):\n{context_str}"
|
||||||
|
|
||||||
|
msgs = [
|
||||||
|
{"role": "system", "content": sys_prompt},
|
||||||
|
{"role": "user", "content": user_prompt_with_context}
|
||||||
|
]
|
||||||
|
|
||||||
|
reply = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=msgs
|
||||||
|
).choices[0].message.content.strip()
|
||||||
|
|
||||||
|
# Store the assistant's response with attribution
|
||||||
|
self.add_message("assistant", speaker, reply)
|
||||||
|
return reply
|
||||||
|
|
||||||
|
def dump(self, sort_by_time: bool = True, group_by_speaker: bool = False):
|
||||||
|
"""
|
||||||
|
Display all messages in the shared project space with attribution.
|
||||||
|
Can be sorted by time and/or grouped by speaker.
|
||||||
|
"""
|
||||||
|
results = self.mem.get_all(run_id=self.run_id)["results"]
|
||||||
|
|
||||||
|
if not results:
|
||||||
|
print("No memories found for this run.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Sort by 'created_at' if requested
|
||||||
|
if sort_by_time:
|
||||||
|
results.sort(key=lambda m: m.get('created_at', ''))
|
||||||
|
print(f"\n--- Project memory (run_id: {self.run_id}, sorted by time) ---")
|
||||||
|
else:
|
||||||
|
print(f"\n--- Project memory (run_id: {self.run_id}) ---")
|
||||||
|
|
||||||
|
if group_by_speaker:
|
||||||
|
from collections import defaultdict
|
||||||
|
grouped_memories = defaultdict(list)
|
||||||
|
for m in results: # Use already potentially sorted results
|
||||||
|
grouped_memories[m.get("actor_id") or "Unknown"].append(m)
|
||||||
|
|
||||||
|
for speaker, mem_list in grouped_memories.items():
|
||||||
|
print(f"\n=== Speaker: {speaker} ===")
|
||||||
|
# If not already sorted by time globally, sort within group
|
||||||
|
# If already sorted globally, this re-sort is redundant unless different key.
|
||||||
|
# For simplicity, if sort_by_time was true, list is already sorted.
|
||||||
|
for m_item in mem_list:
|
||||||
|
timestamp_str = m_item.get('created_at', 'Timestamp N/A')
|
||||||
|
try:
|
||||||
|
# Basic parsing for display, adjust as needed
|
||||||
|
dt_obj = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
||||||
|
formatted_time = dt_obj.strftime('%Y-%m-%d %H:%M:%S')
|
||||||
|
except ValueError:
|
||||||
|
formatted_time = timestamp_str # Fallback
|
||||||
|
print(f"[{formatted_time:19}] {m_item['memory']}")
|
||||||
|
else: # Not grouping by speaker
|
||||||
|
for m in results:
|
||||||
|
who = m.get("actor_id") or "Unknown"
|
||||||
|
timestamp_str = m.get('created_at', 'Timestamp N/A')
|
||||||
|
try:
|
||||||
|
dt_obj = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
||||||
|
formatted_time = dt_obj.strftime('%Y-%m-%d %H:%M:%S')
|
||||||
|
except ValueError:
|
||||||
|
formatted_time = timestamp_str # Fallback
|
||||||
|
print(f"[{formatted_time:19}][{who:8}] {m['memory']}")
|
||||||
|
|
||||||
|
# Demo Usage
|
||||||
|
agent = TaskAgent(RUN_ID)
|
||||||
|
|
||||||
|
# Team collaboration session
|
||||||
|
agent.add_message("user", "alice", "Let's list tasks for the new landing page.")
|
||||||
|
agent.add_message("user", "bob", "I'll own the hero section copy. Maybe tomorrow.")
|
||||||
|
agent.add_message("user", "carol", "I'll choose three product screenshots later today.")
|
||||||
|
agent.add_message("user", "alice", "Actually, I will work on the hero section copy today.")
|
||||||
|
|
||||||
|
|
||||||
|
print("\nAssistant brainstorm reply (default settings):\n")
|
||||||
|
print(agent.brainstorm("What are the current open tasks related to the hero section?"))
|
||||||
|
|
||||||
|
print("\nAssistant brainstorm reply (excluding its own prior context):\n")
|
||||||
|
print(agent.brainstorm("Summarize what Alice is working on.", exclude_assistant_context=True))
|
||||||
|
|
||||||
|
|
||||||
|
print("\n--- Dump (sorted by time by default) ---")
|
||||||
|
agent.dump()
|
||||||
|
|
||||||
|
print("\n--- Dump (grouped by speaker, also sorted by time globally) ---")
|
||||||
|
agent.dump(group_by_speaker=True)
|
||||||
|
|
||||||
|
print("\n--- Dump (default order, not sorted by time explicitly by dump) ---")
|
||||||
|
agent.dump(sort_by_time=False)
|
||||||
|
|
||||||
|
```
|
||||||
1192
mem0/memory/main.py
1192
mem0/memory/main.py
File diff suppressed because it is too large
Load Diff
@@ -1,144 +1,160 @@
|
|||||||
import sqlite3
|
import sqlite3
|
||||||
import threading
|
import threading
|
||||||
import uuid
|
import uuid
|
||||||
|
import logging
|
||||||
|
from typing import List, Dict, Any, Optional
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class SQLiteManager:
|
class SQLiteManager:
|
||||||
def __init__(self, db_path=":memory:"):
|
def __init__(self, db_path: str = ":memory:"):
|
||||||
self.connection = sqlite3.connect(db_path, check_same_thread=False)
|
self.db_path = db_path
|
||||||
|
self.connection = sqlite3.connect(self.db_path, check_same_thread=False)
|
||||||
self._lock = threading.Lock()
|
self._lock = threading.Lock()
|
||||||
self._migrate_history_table()
|
self._migrate_history_table()
|
||||||
self._create_history_table()
|
self._create_history_table()
|
||||||
|
|
||||||
def _migrate_history_table(self):
|
def _migrate_history_table(self) -> None:
|
||||||
with self._lock:
|
"""
|
||||||
with self.connection:
|
If a pre-existing history table had the old group-chat columns,
|
||||||
cursor = self.connection.cursor()
|
rename it, create the new schema, copy the intersecting data, then
|
||||||
|
drop the old table.
|
||||||
|
"""
|
||||||
|
with self._lock, self.connection:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
cur.execute(
|
||||||
|
"SELECT name FROM sqlite_master WHERE type='table' AND name='history'"
|
||||||
|
)
|
||||||
|
if cur.fetchone() is None:
|
||||||
|
return # nothing to migrate
|
||||||
|
|
||||||
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='history'")
|
cur.execute("PRAGMA table_info(history)")
|
||||||
table_exists = cursor.fetchone() is not None
|
old_cols = {row[1] for row in cur.fetchall()}
|
||||||
|
|
||||||
if table_exists:
|
expected_cols = {
|
||||||
# Get the current schema of the history table
|
"id",
|
||||||
cursor.execute("PRAGMA table_info(history)")
|
"memory_id",
|
||||||
current_schema = {row[1]: row[2] for row in cursor.fetchall()}
|
"old_memory",
|
||||||
|
"new_memory",
|
||||||
|
"event",
|
||||||
|
"created_at",
|
||||||
|
"updated_at",
|
||||||
|
"is_deleted",
|
||||||
|
"actor_id",
|
||||||
|
"role",
|
||||||
|
}
|
||||||
|
|
||||||
# Define the expected schema
|
if old_cols == expected_cols:
|
||||||
expected_schema = {
|
return
|
||||||
"id": "TEXT",
|
|
||||||
"memory_id": "TEXT",
|
|
||||||
"old_memory": "TEXT",
|
|
||||||
"new_memory": "TEXT",
|
|
||||||
"new_value": "TEXT",
|
|
||||||
"event": "TEXT",
|
|
||||||
"created_at": "DATETIME",
|
|
||||||
"updated_at": "DATETIME",
|
|
||||||
"is_deleted": "INTEGER",
|
|
||||||
}
|
|
||||||
|
|
||||||
# Check if the schemas are the same
|
logger.info("Migrating history table to new schema (no convo columns).")
|
||||||
if current_schema != expected_schema:
|
cur.execute("ALTER TABLE history RENAME TO history_old")
|
||||||
# Rename the old table
|
|
||||||
cursor.execute("ALTER TABLE history RENAME TO old_history")
|
|
||||||
|
|
||||||
cursor.execute(
|
self._create_history_table()
|
||||||
"""
|
|
||||||
CREATE TABLE IF NOT EXISTS history (
|
|
||||||
id TEXT PRIMARY KEY,
|
|
||||||
memory_id TEXT,
|
|
||||||
old_memory TEXT,
|
|
||||||
new_memory TEXT,
|
|
||||||
new_value TEXT,
|
|
||||||
event TEXT,
|
|
||||||
created_at DATETIME,
|
|
||||||
updated_at DATETIME,
|
|
||||||
is_deleted INTEGER
|
|
||||||
)
|
|
||||||
"""
|
|
||||||
)
|
|
||||||
|
|
||||||
# Copy data from the old table to the new table
|
intersecting = list(expected_cols & old_cols)
|
||||||
cursor.execute(
|
cols_csv = ", ".join(intersecting)
|
||||||
"""
|
cur.execute(
|
||||||
INSERT INTO history (id, memory_id, old_memory, new_memory, new_value, event, created_at, updated_at, is_deleted)
|
f"INSERT INTO history ({cols_csv}) SELECT {cols_csv} FROM history_old"
|
||||||
SELECT id, memory_id, prev_value, new_value, new_value, event, timestamp, timestamp, is_deleted
|
)
|
||||||
FROM old_history
|
cur.execute("DROP TABLE history_old")
|
||||||
""" # noqa: E501
|
|
||||||
)
|
|
||||||
|
|
||||||
cursor.execute("DROP TABLE old_history")
|
def _create_history_table(self) -> None:
|
||||||
|
with self._lock, self.connection:
|
||||||
self.connection.commit()
|
self.connection.execute(
|
||||||
|
|
||||||
def _create_history_table(self):
|
|
||||||
with self._lock:
|
|
||||||
with self.connection:
|
|
||||||
self.connection.execute(
|
|
||||||
"""
|
|
||||||
CREATE TABLE IF NOT EXISTS history (
|
|
||||||
id TEXT PRIMARY KEY,
|
|
||||||
memory_id TEXT,
|
|
||||||
old_memory TEXT,
|
|
||||||
new_memory TEXT,
|
|
||||||
new_value TEXT,
|
|
||||||
event TEXT,
|
|
||||||
created_at DATETIME,
|
|
||||||
updated_at DATETIME,
|
|
||||||
is_deleted INTEGER
|
|
||||||
)
|
|
||||||
"""
|
"""
|
||||||
|
CREATE TABLE IF NOT EXISTS history (
|
||||||
|
id TEXT PRIMARY KEY,
|
||||||
|
memory_id TEXT,
|
||||||
|
old_memory TEXT,
|
||||||
|
new_memory TEXT,
|
||||||
|
event TEXT,
|
||||||
|
created_at DATETIME,
|
||||||
|
updated_at DATETIME,
|
||||||
|
is_deleted INTEGER,
|
||||||
|
actor_id TEXT,
|
||||||
|
role TEXT
|
||||||
)
|
)
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
|
||||||
def add_history(
|
def add_history(
|
||||||
self,
|
self,
|
||||||
memory_id,
|
memory_id: str,
|
||||||
old_memory,
|
old_memory: Optional[str],
|
||||||
new_memory,
|
new_memory: Optional[str],
|
||||||
event,
|
event: str,
|
||||||
created_at=None,
|
*,
|
||||||
updated_at=None,
|
created_at: Optional[str] = None,
|
||||||
is_deleted=0,
|
updated_at: Optional[str] = None,
|
||||||
):
|
is_deleted: int = 0,
|
||||||
with self._lock:
|
actor_id: Optional[str] = None,
|
||||||
with self.connection:
|
role: Optional[str] = None,
|
||||||
self.connection.execute(
|
) -> None:
|
||||||
"""
|
with self._lock, self.connection:
|
||||||
INSERT INTO history (id, memory_id, old_memory, new_memory, event, created_at, updated_at, is_deleted)
|
self.connection.execute(
|
||||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
|
|
||||||
""",
|
|
||||||
(
|
|
||||||
str(uuid.uuid4()),
|
|
||||||
memory_id,
|
|
||||||
old_memory,
|
|
||||||
new_memory,
|
|
||||||
event,
|
|
||||||
created_at,
|
|
||||||
updated_at,
|
|
||||||
is_deleted,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_history(self, memory_id):
|
|
||||||
with self._lock:
|
|
||||||
cursor = self.connection.execute(
|
|
||||||
"""
|
"""
|
||||||
SELECT id, memory_id, old_memory, new_memory, event, created_at, updated_at
|
INSERT INTO history (
|
||||||
|
id, memory_id, old_memory, new_memory, event,
|
||||||
|
created_at, updated_at, is_deleted, actor_id, role
|
||||||
|
)
|
||||||
|
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||||
|
""",
|
||||||
|
(
|
||||||
|
str(uuid.uuid4()),
|
||||||
|
memory_id,
|
||||||
|
old_memory,
|
||||||
|
new_memory,
|
||||||
|
event,
|
||||||
|
created_at,
|
||||||
|
updated_at,
|
||||||
|
is_deleted,
|
||||||
|
actor_id,
|
||||||
|
role,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_history(self, memory_id: str) -> List[Dict[str, Any]]:
|
||||||
|
with self._lock:
|
||||||
|
cur = self.connection.execute(
|
||||||
|
"""
|
||||||
|
SELECT id, memory_id, old_memory, new_memory, event,
|
||||||
|
created_at, updated_at, is_deleted, actor_id, role
|
||||||
FROM history
|
FROM history
|
||||||
WHERE memory_id = ?
|
WHERE memory_id = ?
|
||||||
ORDER BY updated_at ASC
|
ORDER BY created_at ASC, DATETIME(updated_at) ASC
|
||||||
""",
|
""",
|
||||||
(memory_id,),
|
(memory_id,),
|
||||||
)
|
)
|
||||||
rows = cursor.fetchall()
|
rows = cur.fetchall()
|
||||||
return [
|
|
||||||
{
|
return [
|
||||||
"id": row[0],
|
{
|
||||||
"memory_id": row[1],
|
"id": r[0],
|
||||||
"old_memory": row[2],
|
"memory_id": r[1],
|
||||||
"new_memory": row[3],
|
"old_memory": r[2],
|
||||||
"event": row[4],
|
"new_memory": r[3],
|
||||||
"created_at": row[5],
|
"event": r[4],
|
||||||
"updated_at": row[6],
|
"created_at": r[5],
|
||||||
}
|
"updated_at": r[6],
|
||||||
for row in rows
|
"is_deleted": bool(r[7]),
|
||||||
]
|
"actor_id": r[8],
|
||||||
|
"role": r[9],
|
||||||
|
}
|
||||||
|
for r in rows
|
||||||
|
]
|
||||||
|
|
||||||
|
def reset(self) -> None:
|
||||||
|
"""Drop and recreate the history table."""
|
||||||
|
with self._lock, self.connection:
|
||||||
|
self.connection.execute("DROP TABLE IF EXISTS history")
|
||||||
|
self._create_history_table()
|
||||||
|
|
||||||
|
def close(self) -> None:
|
||||||
|
if self.connection:
|
||||||
|
self.connection.close()
|
||||||
|
self.connection = None
|
||||||
|
|
||||||
|
def __del__(self):
|
||||||
|
self.close()
|
||||||
|
|||||||
Reference in New Issue
Block a user