+MongoDB Vector Support (#2367)
Co-authored-by: Divya Gupta <divya.gupta@mongodb.com>
This commit is contained in:
176
tests/vector_stores/test_mongodb.py
Normal file
176
tests/vector_stores/test_mongodb.py
Normal file
@@ -0,0 +1,176 @@
|
||||
import time
|
||||
import pytest
|
||||
from unittest.mock import MagicMock, patch
|
||||
from mem0.vector_stores.mongodb import MongoVector
|
||||
from pymongo.operations import SearchIndexModel
|
||||
|
||||
@pytest.fixture
|
||||
@patch("mem0.vector_stores.mongodb.MongoClient")
|
||||
def mongo_vector_fixture(mock_mongo_client):
|
||||
mock_client = mock_mongo_client.return_value
|
||||
mock_db = mock_client["test_db"]
|
||||
mock_collection = mock_db["test_collection"]
|
||||
mock_collection.list_search_indexes.return_value = []
|
||||
mock_collection.aggregate.return_value = []
|
||||
mock_collection.find_one.return_value = None
|
||||
mock_collection.find.return_value = []
|
||||
mock_db.list_collection_names.return_value = []
|
||||
|
||||
mongo_vector = MongoVector(
|
||||
db_name="test_db",
|
||||
collection_name="test_collection",
|
||||
embedding_model_dims=1536,
|
||||
user="username",
|
||||
password="password",
|
||||
)
|
||||
return mongo_vector, mock_collection, mock_db
|
||||
|
||||
def test_initalize_create_col(mongo_vector_fixture):
|
||||
mongo_vector, mock_collection, mock_db = mongo_vector_fixture
|
||||
assert mongo_vector.collection_name == "test_collection"
|
||||
assert mongo_vector.embedding_model_dims == 1536
|
||||
assert mongo_vector.db_name == "test_db"
|
||||
|
||||
# Verify create_col being called
|
||||
mock_db.list_collection_names.assert_called_once()
|
||||
mock_collection.insert_one.assert_called_once_with({"_id": 0, "placeholder": True})
|
||||
mock_collection.delete_one.assert_called_once_with({"_id": 0})
|
||||
assert mongo_vector.index_name == "test_collection_vector_index"
|
||||
mock_collection.list_search_indexes.assert_called_once_with(name="test_collection_vector_index")
|
||||
mock_collection.create_search_index.assert_called_once()
|
||||
args, _ = mock_collection.create_search_index.call_args
|
||||
search_index_model = args[0].document
|
||||
assert search_index_model == {
|
||||
"name": "test_collection_vector_index",
|
||||
"definition": {
|
||||
"mappings": {
|
||||
"dynamic": False,
|
||||
"fields": {
|
||||
"embedding": {
|
||||
"type": "knnVector",
|
||||
"d": 1536,
|
||||
"similarity": "cosine",
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
assert mongo_vector.collection == mock_collection
|
||||
|
||||
def test_insert(mongo_vector_fixture):
|
||||
mongo_vector, mock_collection, _ = mongo_vector_fixture
|
||||
vectors = [[0.1] * 1536, [0.2] * 1536]
|
||||
payloads = [{"name": "vector1"}, {"name": "vector2"}]
|
||||
ids = ["id1", "id2"]
|
||||
|
||||
mongo_vector.insert(vectors, payloads, ids)
|
||||
expected_records=[
|
||||
({"_id": ids[0], "embedding": vectors[0], "payload": payloads[0]}),
|
||||
({"_id": ids[1], "embedding": vectors[1], "payload": payloads[1]})
|
||||
]
|
||||
mock_collection.insert_many.assert_called_once_with(expected_records)
|
||||
|
||||
def test_search(mongo_vector_fixture):
|
||||
mongo_vector, mock_collection, _ = mongo_vector_fixture
|
||||
query_vector = [0.1] * 1536
|
||||
mock_collection.aggregate.return_value = [
|
||||
{"_id": "id1", "score": 0.9, "payload": {"key": "value1"}},
|
||||
{"_id": "id2", "score": 0.8, "payload": {"key": "value2"}},
|
||||
]
|
||||
mock_collection.list_search_indexes.return_value = ["test_collection_vector_index"]
|
||||
|
||||
results = mongo_vector.search("query_str", query_vector, limit=2)
|
||||
mock_collection.list_search_indexes.assert_called_with(name="test_collection_vector_index")
|
||||
mock_collection.aggregate.assert_called_once_with([
|
||||
{
|
||||
"$vectorSearch": {
|
||||
"index": "test_collection_vector_index",
|
||||
"limit": 2,
|
||||
"numCandidates": 2,
|
||||
"queryVector": query_vector,
|
||||
"path": "embedding",
|
||||
},
|
||||
},
|
||||
{"$set": {"score": {"$meta": "vectorSearchScore"}}},
|
||||
{"$project": {"embedding": 0}},
|
||||
])
|
||||
assert len(results) == 2
|
||||
assert results[0].id == "id1"
|
||||
assert results[0].score == 0.9
|
||||
assert results[1].id == "id2"
|
||||
assert results[1].score == 0.8
|
||||
|
||||
def test_delete(mongo_vector_fixture):
|
||||
mongo_vector, mock_collection, _ = mongo_vector_fixture
|
||||
mock_delete_result = MagicMock()
|
||||
mock_delete_result.deleted_count = 1
|
||||
mock_collection.delete_one.return_value = mock_delete_result
|
||||
|
||||
mongo_vector.delete("id1")
|
||||
mock_collection.delete_one.assert_called_with({"_id": "id1"})
|
||||
|
||||
def test_update(mongo_vector_fixture):
|
||||
mongo_vector, mock_collection, _ = mongo_vector_fixture
|
||||
mock_update_result = MagicMock()
|
||||
mock_update_result.matched_count = 1
|
||||
mock_collection.update_one.return_value = mock_update_result
|
||||
idValue = "id1"
|
||||
vectorValue = [0.2] * 1536
|
||||
payloadValue = {"key": "updated"}
|
||||
|
||||
mongo_vector.update(idValue, vector=vectorValue, payload=payloadValue)
|
||||
mock_collection.update_one.assert_called_once_with(
|
||||
{"_id": idValue},
|
||||
{"$set": {"embedding": vectorValue, "payload": payloadValue}},
|
||||
)
|
||||
|
||||
def test_get(mongo_vector_fixture):
|
||||
mongo_vector, mock_collection, _ = mongo_vector_fixture
|
||||
mock_collection.find_one.return_value = {"_id": "id1", "payload": {"key": "value1"}}
|
||||
|
||||
result = mongo_vector.get("id1")
|
||||
assert result is not None
|
||||
assert result.id == "id1"
|
||||
assert result.payload == {"key": "value1"}
|
||||
|
||||
def test_list_cols(mongo_vector_fixture):
|
||||
mongo_vector, _, mock_db = mongo_vector_fixture
|
||||
mock_db.list_collection_names.return_value = ["col1", "col2"]
|
||||
|
||||
collections = mongo_vector.list_cols()
|
||||
assert collections == ["col1", "col2"]
|
||||
|
||||
def test_delete_col(mongo_vector_fixture):
|
||||
mongo_vector, mock_collection, _ = mongo_vector_fixture
|
||||
|
||||
mongo_vector.delete_col()
|
||||
mock_collection.drop.assert_called_once()
|
||||
|
||||
def test_col_info(mongo_vector_fixture):
|
||||
mongo_vector, _, mock_db = mongo_vector_fixture
|
||||
mock_db.command.return_value = {"count": 10, "size": 1024}
|
||||
|
||||
info = mongo_vector.col_info()
|
||||
mock_db.command.assert_called_once_with("collstats", "test_collection")
|
||||
assert info["name"] == "test_collection"
|
||||
assert info["count"] == 10
|
||||
assert info["size"] == 1024
|
||||
|
||||
def test_list(mongo_vector_fixture):
|
||||
mongo_vector, mock_collection, _ = mongo_vector_fixture
|
||||
mock_cursor = MagicMock()
|
||||
mock_cursor.limit.return_value = [
|
||||
{"_id": "id1", "payload": {"key": "value1"}},
|
||||
{"_id": "id2", "payload": {"key": "value2"}},
|
||||
]
|
||||
mock_collection.find.return_value = mock_cursor
|
||||
|
||||
query_filters = {"_id": {"$in": ["id1", "id2"]}}
|
||||
results = mongo_vector.list(filters=query_filters, limit=2)
|
||||
mock_collection.find.assert_called_once_with(query_filters)
|
||||
mock_cursor.limit.assert_called_once_with(2)
|
||||
assert len(results) == 2
|
||||
assert results[0].id == "id1"
|
||||
assert results[0].payload == {"key": "value1"}
|
||||
assert results[1].id == "id2"
|
||||
assert results[1].payload == {"key": "value2"}
|
||||
Reference in New Issue
Block a user