Add langchain embedding, update langchain LLM and version bump -> 0.1.84 (#2510)

This commit is contained in:
Dev Khant
2025-04-07 15:27:26 +05:30
committed by GitHub
parent 5509066925
commit 9dfa9b4412
14 changed files with 266 additions and 253 deletions

View File

@@ -4,97 +4,99 @@ import pytest
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.langchain import LangchainLLM
# Add the import for BaseChatModel
try:
from langchain.chat_models.base import BaseChatModel
except ImportError:
from unittest.mock import MagicMock
BaseChatModel = MagicMock
@pytest.fixture
def mock_langchain_model():
"""Mock a Langchain model for testing."""
with patch("langchain_openai.ChatOpenAI") as mock_chat_model:
mock_model = Mock()
mock_model.invoke.return_value = Mock(content="This is a test response")
mock_chat_model.return_value = mock_model
yield mock_model
mock_model = Mock(spec=BaseChatModel)
mock_model.invoke.return_value = Mock(content="This is a test response")
return mock_model
def test_langchain_initialization():
"""Test that LangchainLLM initializes correctly with a valid provider."""
with patch("langchain_openai.ChatOpenAI") as mock_chat_model:
# Setup the mock model
mock_model = Mock()
mock_chat_model.return_value = mock_model
# Create a config with OpenAI provider
config = BaseLlmConfig(
model="gpt-3.5-turbo",
temperature=0.7,
max_tokens=100,
api_key="test-api-key",
langchain_provider="OpenAI"
)
# Initialize the LangchainLLM
llm = LangchainLLM(config)
# Verify the model was initialized with correct parameters
mock_chat_model.assert_called_once_with(
model="gpt-3.5-turbo",
temperature=0.7,
max_tokens=100,
api_key="test-api-key"
)
assert llm.langchain_model == mock_model
def test_langchain_initialization(mock_langchain_model):
"""Test that LangchainLLM initializes correctly with a valid model."""
# Create a config with the model instance directly
config = BaseLlmConfig(
model=mock_langchain_model,
temperature=0.7,
max_tokens=100,
api_key="test-api-key"
)
# Initialize the LangchainLLM
llm = LangchainLLM(config)
# Verify the model was correctly assigned
assert llm.langchain_model == mock_langchain_model
def test_generate_response(mock_langchain_model):
"""Test that generate_response correctly processes messages and returns a response."""
# Create a config with OpenAI provider
# Create a config with the model instance
config = BaseLlmConfig(
model="gpt-3.5-turbo",
model=mock_langchain_model,
temperature=0.7,
max_tokens=100,
api_key="test-api-key",
langchain_provider="OpenAI"
api_key="test-api-key"
)
# Initialize the LangchainLLM
with patch("langchain_openai.ChatOpenAI", return_value=mock_langchain_model):
llm = LangchainLLM(config)
# Create test messages
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing well! How can I help you?"},
{"role": "user", "content": "Tell me a joke."}
]
# Get response
response = llm.generate_response(messages)
# Verify the correct message format was passed to the model
expected_langchain_messages = [
("system", "You are a helpful assistant."),
("human", "Hello, how are you?"),
("ai", "I'm doing well! How can I help you?"),
("human", "Tell me a joke.")
]
mock_langchain_model.invoke.assert_called_once()
# Extract the first argument of the first call
actual_messages = mock_langchain_model.invoke.call_args[0][0]
assert actual_messages == expected_langchain_messages
assert response == "This is a test response"
llm = LangchainLLM(config)
# Create test messages
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing well! How can I help you?"},
{"role": "user", "content": "Tell me a joke."}
]
# Get response
response = llm.generate_response(messages)
# Verify the correct message format was passed to the model
expected_langchain_messages = [
("system", "You are a helpful assistant."),
("human", "Hello, how are you?"),
("ai", "I'm doing well! How can I help you?"),
("human", "Tell me a joke.")
]
mock_langchain_model.invoke.assert_called_once()
# Extract the first argument of the first call
actual_messages = mock_langchain_model.invoke.call_args[0][0]
assert actual_messages == expected_langchain_messages
assert response == "This is a test response"
def test_invalid_provider():
"""Test that LangchainLLM raises an error with an invalid provider."""
def test_invalid_model():
"""Test that LangchainLLM raises an error with an invalid model."""
config = BaseLlmConfig(
model="test-model",
model="not-a-valid-model-instance",
temperature=0.7,
max_tokens=100,
api_key="test-api-key",
langchain_provider="InvalidProvider"
api_key="test-api-key"
)
with pytest.raises(ValueError, match="Invalid provider: InvalidProvider"):
with pytest.raises(ValueError, match="`model` must be an instance of BaseChatModel"):
LangchainLLM(config)
def test_missing_model():
"""Test that LangchainLLM raises an error when model is None."""
config = BaseLlmConfig(
model=None,
temperature=0.7,
max_tokens=100,
api_key="test-api-key"
)
with pytest.raises(ValueError, match="`model` parameter is required"):
LangchainLLM(config)