Add langchain embedding, update langchain LLM and version bump -> 0.1.84 (#2510)
This commit is contained in:
@@ -13,7 +13,7 @@ class BaseLlmConfig(ABC):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Optional[str] = None,
|
||||
model: Optional[Union[str, Dict]] = None,
|
||||
temperature: float = 0.1,
|
||||
api_key: Optional[str] = None,
|
||||
max_tokens: int = 2000,
|
||||
@@ -41,8 +41,6 @@ class BaseLlmConfig(ABC):
|
||||
xai_base_url: Optional[str] = None,
|
||||
# LM Studio specific
|
||||
lmstudio_base_url: Optional[str] = "http://localhost:1234/v1",
|
||||
# Langchain specific
|
||||
langchain_provider: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for the LLM.
|
||||
@@ -89,8 +87,6 @@ class BaseLlmConfig(ABC):
|
||||
:type xai_base_url: Optional[str], optional
|
||||
:param lmstudio_base_url: LM Studio base URL to be use, defaults to "http://localhost:1234/v1"
|
||||
:type lmstudio_base_url: Optional[str], optional
|
||||
:param langchain_provider: Langchain provider to be use, defaults to None
|
||||
:type langchain_provider: Optional[str], optional
|
||||
"""
|
||||
|
||||
self.model = model
|
||||
@@ -127,6 +123,3 @@ class BaseLlmConfig(ABC):
|
||||
|
||||
# LM Studio specific
|
||||
self.lmstudio_base_url = lmstudio_base_url
|
||||
|
||||
# Langchain specific
|
||||
self.langchain_provider = langchain_provider
|
||||
|
||||
@@ -22,6 +22,7 @@ class EmbedderConfig(BaseModel):
|
||||
"vertexai",
|
||||
"together",
|
||||
"lmstudio",
|
||||
"langchain",
|
||||
]:
|
||||
return v
|
||||
else:
|
||||
|
||||
36
mem0/embeddings/langchain.py
Normal file
36
mem0/embeddings/langchain.py
Normal file
@@ -0,0 +1,36 @@
|
||||
import os
|
||||
from typing import Literal, Optional
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
|
||||
try:
|
||||
from langchain.embeddings.base import Embeddings
|
||||
except ImportError:
|
||||
raise ImportError("langchain is not installed. Please install it using `pip install langchain`")
|
||||
|
||||
|
||||
class LangchainEmbedding(EmbeddingBase):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
if self.config.model is None:
|
||||
raise ValueError("`model` parameter is required")
|
||||
|
||||
if not isinstance(self.config.model, Embeddings):
|
||||
raise ValueError("`model` must be an instance of Embeddings")
|
||||
|
||||
self.langchain_model = self.config.model
|
||||
|
||||
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
|
||||
"""
|
||||
Get the embedding for the given text using Langchain.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
|
||||
Returns:
|
||||
list: The embedding vector.
|
||||
"""
|
||||
|
||||
return self.langchain_model.embed_query(text)
|
||||
@@ -1,174 +1,25 @@
|
||||
from typing import Dict, List, Optional
|
||||
import enum
|
||||
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
from mem0.llms.base import LLMBase
|
||||
|
||||
# Default import for langchain_community
|
||||
try:
|
||||
from langchain_community import chat_models
|
||||
from langchain.chat_models.base import BaseChatModel
|
||||
except ImportError:
|
||||
raise ImportError("langchain_community not found. Please install it with `pip install langchain-community`")
|
||||
|
||||
# Provider-specific package mapping
|
||||
PROVIDER_PACKAGES = {
|
||||
"Anthropic": "langchain_anthropic",
|
||||
"MistralAI": "langchain_mistralai",
|
||||
"Fireworks": "langchain_fireworks",
|
||||
"AzureOpenAI": "langchain_openai",
|
||||
"OpenAI": "langchain_openai",
|
||||
"Together": "langchain_together",
|
||||
"VertexAI": "langchain_google_vertexai",
|
||||
"GoogleAI": "langchain_google_genai",
|
||||
"Groq": "langchain_groq",
|
||||
"Cohere": "langchain_cohere",
|
||||
"Bedrock": "langchain_aws",
|
||||
"HuggingFace": "langchain_huggingface",
|
||||
"NVIDIA": "langchain_nvidia_ai_endpoints",
|
||||
"Ollama": "langchain_ollama",
|
||||
"AI21": "langchain_ai21",
|
||||
"Upstage": "langchain_upstage",
|
||||
"Databricks": "databricks_langchain",
|
||||
"Watsonx": "langchain_ibm",
|
||||
"xAI": "langchain_xai",
|
||||
"Perplexity": "langchain_perplexity",
|
||||
}
|
||||
|
||||
|
||||
class LangchainProvider(enum.Enum):
|
||||
Abso = "ChatAbso"
|
||||
AI21 = "ChatAI21"
|
||||
Alibaba = "ChatAlibabaCloud"
|
||||
Anthropic = "ChatAnthropic"
|
||||
Anyscale = "ChatAnyscale"
|
||||
AzureAIChatCompletionsModel = "AzureAIChatCompletionsModel"
|
||||
AzureOpenAI = "AzureChatOpenAI"
|
||||
AzureMLEndpoint = "ChatAzureMLEndpoint"
|
||||
Baichuan = "ChatBaichuan"
|
||||
Qianfan = "ChatQianfan"
|
||||
Bedrock = "ChatBedrock"
|
||||
Cerebras = "ChatCerebras"
|
||||
CloudflareWorkersAI = "ChatCloudflareWorkersAI"
|
||||
Cohere = "ChatCohere"
|
||||
ContextualAI = "ChatContextualAI"
|
||||
Coze = "ChatCoze"
|
||||
Dappier = "ChatDappier"
|
||||
Databricks = "ChatDatabricks"
|
||||
DeepInfra = "ChatDeepInfra"
|
||||
DeepSeek = "ChatDeepSeek"
|
||||
EdenAI = "ChatEdenAI"
|
||||
EverlyAI = "ChatEverlyAI"
|
||||
Fireworks = "ChatFireworks"
|
||||
Friendli = "ChatFriendli"
|
||||
GigaChat = "ChatGigaChat"
|
||||
Goodfire = "ChatGoodfire"
|
||||
GoogleAI = "ChatGoogleAI"
|
||||
VertexAI = "VertexAI"
|
||||
GPTRouter = "ChatGPTRouter"
|
||||
Groq = "ChatGroq"
|
||||
HuggingFace = "ChatHuggingFace"
|
||||
Watsonx = "ChatWatsonx"
|
||||
Jina = "ChatJina"
|
||||
Kinetica = "ChatKinetica"
|
||||
Konko = "ChatKonko"
|
||||
LiteLLM = "ChatLiteLLM"
|
||||
LiteLLMRouter = "ChatLiteLLMRouter"
|
||||
Llama2Chat = "Llama2Chat"
|
||||
LlamaAPI = "ChatLlamaAPI"
|
||||
LlamaEdge = "ChatLlamaEdge"
|
||||
LlamaCpp = "ChatLlamaCpp"
|
||||
Maritalk = "ChatMaritalk"
|
||||
MiniMax = "ChatMiniMax"
|
||||
MistralAI = "ChatMistralAI"
|
||||
MLX = "ChatMLX"
|
||||
ModelScope = "ChatModelScope"
|
||||
Moonshot = "ChatMoonshot"
|
||||
Naver = "ChatNaver"
|
||||
Netmind = "ChatNetmind"
|
||||
NVIDIA = "ChatNVIDIA"
|
||||
OCIModelDeployment = "ChatOCIModelDeployment"
|
||||
OCIGenAI = "ChatOCIGenAI"
|
||||
OctoAI = "ChatOctoAI"
|
||||
Ollama = "ChatOllama"
|
||||
OpenAI = "ChatOpenAI"
|
||||
Outlines = "ChatOutlines"
|
||||
Perplexity = "ChatPerplexity"
|
||||
Pipeshift = "ChatPipeshift"
|
||||
PredictionGuard = "ChatPredictionGuard"
|
||||
PremAI = "ChatPremAI"
|
||||
PromptLayerOpenAI = "PromptLayerChatOpenAI"
|
||||
QwQ = "ChatQwQ"
|
||||
Reka = "ChatReka"
|
||||
RunPod = "ChatRunPod"
|
||||
SambaNovaCloud = "ChatSambaNovaCloud"
|
||||
SambaStudio = "ChatSambaStudio"
|
||||
SeekrFlow = "ChatSeekrFlow"
|
||||
SnowflakeCortex = "ChatSnowflakeCortex"
|
||||
Solar = "ChatSolar"
|
||||
SparkLLM = "ChatSparkLLM"
|
||||
Nebula = "ChatNebula"
|
||||
Hunyuan = "ChatHunyuan"
|
||||
Together = "ChatTogether"
|
||||
TongyiQwen = "ChatTongyiQwen"
|
||||
Upstage = "ChatUpstage"
|
||||
Vectara = "ChatVectara"
|
||||
VLLM = "ChatVLLM"
|
||||
VolcEngine = "ChatVolcEngine"
|
||||
Writer = "ChatWriter"
|
||||
xAI = "ChatXAI"
|
||||
Xinference = "ChatXinference"
|
||||
Yandex = "ChatYandex"
|
||||
Yi = "ChatYi"
|
||||
Yuan2 = "ChatYuan2"
|
||||
ZhipuAI = "ChatZhipuAI"
|
||||
raise ImportError("langchain is not installed. Please install it using `pip install langchain`")
|
||||
|
||||
|
||||
class LangchainLLM(LLMBase):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
provider = self.config.langchain_provider
|
||||
if provider not in LangchainProvider.__members__:
|
||||
raise ValueError(f"Invalid provider: {provider}")
|
||||
model_name = LangchainProvider[provider].value
|
||||
if self.config.model is None:
|
||||
raise ValueError("`model` parameter is required")
|
||||
|
||||
try:
|
||||
# Check if this provider needs a specialized package
|
||||
if provider in PROVIDER_PACKAGES:
|
||||
if provider == "Anthropic": # Special handling for Anthropic with Pydantic v2
|
||||
try:
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
model_class = ChatAnthropic
|
||||
except ImportError:
|
||||
raise ImportError("langchain_anthropic not found. Please install it with `pip install langchain-anthropic`")
|
||||
else:
|
||||
package_name = PROVIDER_PACKAGES[provider]
|
||||
try:
|
||||
# Import the model class directly from the package
|
||||
module_path = f"{package_name}"
|
||||
model_class = __import__(module_path, fromlist=[model_name])
|
||||
model_class = getattr(model_class, model_name)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
f"Package {package_name} not found. " f"Please install it with `pip install {package_name}`"
|
||||
)
|
||||
except AttributeError:
|
||||
raise ImportError(f"Model {model_name} not found in {package_name}")
|
||||
else:
|
||||
# Use the default langchain_community module
|
||||
if not hasattr(chat_models, model_name):
|
||||
raise ImportError(f"Provider {provider} not found in langchain_community.chat_models")
|
||||
if not isinstance(self.config.model, BaseChatModel):
|
||||
raise ValueError("`model` must be an instance of BaseChatModel")
|
||||
|
||||
model_class = getattr(chat_models, model_name)
|
||||
|
||||
# Initialize the model with relevant config parameters
|
||||
self.langchain_model = model_class(
|
||||
model=self.config.model,
|
||||
temperature=self.config.temperature,
|
||||
max_tokens=self.config.max_tokens
|
||||
)
|
||||
except (ImportError, AttributeError, ValueError) as e:
|
||||
raise ImportError(f"Error setting up langchain model for provider {provider}: {str(e)}")
|
||||
self.langchain_model = self.config.model
|
||||
|
||||
def generate_response(
|
||||
self,
|
||||
|
||||
@@ -623,14 +623,13 @@ class Memory(MemoryBase):
|
||||
capture_event("mem0._create_memory", self, {"memory_id": memory_id})
|
||||
return memory_id
|
||||
|
||||
def _create_procedural_memory(self, messages, metadata=None, llm=None, prompt=None):
|
||||
def _create_procedural_memory(self, messages, metadata=None, prompt=None):
|
||||
"""
|
||||
Create a procedural memory
|
||||
|
||||
Args:
|
||||
messages (list): List of messages to create a procedural memory from.
|
||||
metadata (dict): Metadata to create a procedural memory from.
|
||||
llm (BaseChatModel, optional): LLM class to use for generating procedural memories. Defaults to None. Useful when user is using LangChain ChatModel.
|
||||
prompt (str, optional): Prompt to use for the procedural memory creation. Defaults to None.
|
||||
"""
|
||||
try:
|
||||
@@ -650,12 +649,7 @@ class Memory(MemoryBase):
|
||||
]
|
||||
|
||||
try:
|
||||
if llm is not None:
|
||||
parsed_messages = convert_to_messages(parsed_messages)
|
||||
response = llm.invoke(input=parsed_messages)
|
||||
procedural_memory = response.content
|
||||
else:
|
||||
procedural_memory = self.llm.generate_response(messages=parsed_messages)
|
||||
procedural_memory = self.llm.generate_response(messages=parsed_messages)
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating procedural memory summary: {e}")
|
||||
raise
|
||||
|
||||
@@ -50,6 +50,7 @@ class EmbedderFactory:
|
||||
"vertexai": "mem0.embeddings.vertexai.VertexAIEmbedding",
|
||||
"together": "mem0.embeddings.together.TogetherEmbedding",
|
||||
"lmstudio": "mem0.embeddings.lmstudio.LMStudioEmbedding",
|
||||
"langchain": "mem0.embeddings.langchain.LangchainEmbedding",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
||||
Reference in New Issue
Block a user