Add langchain embedding, update langchain LLM and version bump -> 0.1.84 (#2510)
This commit is contained in:
@@ -109,7 +109,6 @@ Here's a comprehensive list of all parameters that can be used across different
|
||||
| `deepseek_base_url` | Base URL for DeepSeek API | DeepSeek |
|
||||
| `xai_base_url` | Base URL for XAI API | XAI |
|
||||
| `lmstudio_base_url` | Base URL for LM Studio API | LM Studio |
|
||||
| `langchain_provider` | Provider for Langchain | Langchain |
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Provider |
|
||||
|
||||
@@ -12,19 +12,24 @@ For a complete list of available chat models supported by LangChain, refer to th
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
# Set necessary environment variables for your chosen LangChain provider
|
||||
# For example, if using OpenAI through LangChain:
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
|
||||
# Initialize a LangChain model directly
|
||||
openai_model = ChatOpenAI(
|
||||
model="gpt-4o",
|
||||
temperature=0.2,
|
||||
max_tokens=2000
|
||||
)
|
||||
|
||||
# Pass the initialized model to the config
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "langchain",
|
||||
"config": {
|
||||
"langchain_provider": "OpenAI",
|
||||
"model": "gpt-4o",
|
||||
"temperature": 0.2,
|
||||
"max_tokens": 2000,
|
||||
"model": openai_model
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -53,15 +58,15 @@ LangChain supports a wide range of LLM providers, including:
|
||||
- HuggingFace (`HuggingFaceChatEndpoint`)
|
||||
- And many more
|
||||
|
||||
You can specify any supported provider in the `langchain_provider` parameter. For a complete and up-to-date list of available providers, refer to the [LangChain Chat Models documentation](https://python.langchain.com/docs/integrations/chat).
|
||||
You can use any of these model instances directly in your configuration. For a complete and up-to-date list of available providers, refer to the [LangChain Chat Models documentation](https://python.langchain.com/docs/integrations/chat).
|
||||
|
||||
## Provider-Specific Configuration
|
||||
|
||||
When using LangChain as a provider, you'll need to:
|
||||
|
||||
1. Set the appropriate environment variables for your chosen LLM provider
|
||||
2. Specify the LangChain provider class name in the `langchain_provider` parameter
|
||||
3. Include any additional configuration parameters required by the specific provider
|
||||
2. Import and initialize the specific model class you want to use
|
||||
3. Pass the initialized model instance to the config
|
||||
|
||||
<Note>
|
||||
Make sure to install the necessary LangChain packages and any provider-specific dependencies.
|
||||
|
||||
Reference in New Issue
Block a user