Add langchain embedding, update langchain LLM and version bump -> 0.1.84 (#2510)
This commit is contained in:
@@ -6,6 +6,15 @@ mode: "wide"
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
|
||||
<Update label="2025-04-07" description="v0.1.84">
|
||||
|
||||
**New Features:**
|
||||
- **Langchain Embedder:** Added Langchain embedder integration
|
||||
|
||||
**Improvements:**
|
||||
- **Langchain LLM:** Updated Langchain LLM integration to directly pass the Langchain object LLM
|
||||
</Update>
|
||||
|
||||
<Update label="2025-04-07" description="v0.1.83">
|
||||
|
||||
**Bug Fixes:**
|
||||
|
||||
120
docs/components/embedders/models/langchain.mdx
Normal file
120
docs/components/embedders/models/langchain.mdx
Normal file
@@ -0,0 +1,120 @@
|
||||
---
|
||||
title: LangChain
|
||||
---
|
||||
|
||||
Mem0 supports LangChain as a provider to access a wide range of embedding models. LangChain is a framework for developing applications powered by language models, making it easy to integrate various embedding providers through a consistent interface.
|
||||
|
||||
For a complete list of available embedding models supported by LangChain, refer to the [LangChain Text Embedding documentation](https://python.langchain.com/docs/integrations/text_embedding/).
|
||||
|
||||
## Usage
|
||||
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
|
||||
# Set necessary environment variables for your chosen LangChain provider
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
|
||||
# Initialize a LangChain embeddings model directly
|
||||
openai_embeddings = OpenAIEmbeddings(
|
||||
model="text-embedding-3-small",
|
||||
dimensions=1536
|
||||
)
|
||||
|
||||
# Pass the initialized model to the config
|
||||
config = {
|
||||
"embedder": {
|
||||
"provider": "langchain",
|
||||
"config": {
|
||||
"model": openai_embeddings
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
messages = [
|
||||
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
|
||||
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
|
||||
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
|
||||
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
|
||||
]
|
||||
m.add(messages, user_id="alice", metadata={"category": "movies"})
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Supported LangChain Embedding Providers
|
||||
|
||||
LangChain supports a wide range of embedding providers, including:
|
||||
|
||||
- OpenAI (`OpenAIEmbeddings`)
|
||||
- Cohere (`CohereEmbeddings`)
|
||||
- Google (`VertexAIEmbeddings`)
|
||||
- Hugging Face (`HuggingFaceEmbeddings`)
|
||||
- Sentence Transformers (`HuggingFaceEmbeddings`)
|
||||
- Azure OpenAI (`AzureOpenAIEmbeddings`)
|
||||
- Ollama (`OllamaEmbeddings`)
|
||||
- Together (`TogetherEmbeddings`)
|
||||
- And many more
|
||||
|
||||
You can use any of these model instances directly in your configuration. For a complete and up-to-date list of available embedding providers, refer to the [LangChain Text Embedding documentation](https://python.langchain.com/docs/integrations/text_embedding/).
|
||||
|
||||
## Provider-Specific Configuration
|
||||
|
||||
When using LangChain as an embedder provider, you'll need to:
|
||||
|
||||
1. Set the appropriate environment variables for your chosen embedding provider
|
||||
2. Import and initialize the specific model class you want to use
|
||||
3. Pass the initialized model instance to the config
|
||||
|
||||
### Examples with Different Providers
|
||||
|
||||
#### HuggingFace Embeddings
|
||||
|
||||
```python
|
||||
from langchain_huggingface import HuggingFaceEmbeddings
|
||||
|
||||
# Initialize a HuggingFace embeddings model
|
||||
hf_embeddings = HuggingFaceEmbeddings(
|
||||
model_name="BAAI/bge-small-en-v1.5",
|
||||
encode_kwargs={"normalize_embeddings": True}
|
||||
)
|
||||
|
||||
config = {
|
||||
"embedder": {
|
||||
"provider": "langchain",
|
||||
"config": {
|
||||
"model": hf_embeddings
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### Ollama Embeddings
|
||||
|
||||
```python
|
||||
from langchain_ollama import OllamaEmbeddings
|
||||
|
||||
# Initialize an Ollama embeddings model
|
||||
ollama_embeddings = OllamaEmbeddings(
|
||||
model="nomic-embed-text"
|
||||
)
|
||||
|
||||
config = {
|
||||
"embedder": {
|
||||
"provider": "langchain",
|
||||
"config": {
|
||||
"model": ollama_embeddings
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<Note>
|
||||
Make sure to install the necessary LangChain packages and any provider-specific dependencies.
|
||||
</Note>
|
||||
|
||||
## Config
|
||||
|
||||
All available parameters for the `langchain` embedder config are present in [Master List of All Params in Config](../config).
|
||||
@@ -23,6 +23,7 @@ See the list of supported embedders below.
|
||||
<Card title="Vertex AI" href="/components/embedders/models/vertexai"></Card>
|
||||
<Card title="Together" href="/components/embedders/models/together"></Card>
|
||||
<Card title="LM Studio" href="/components/embedders/models/lmstudio"></Card>
|
||||
<Card title="Langchain" href="/components/embedders/models/langchain"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -109,7 +109,6 @@ Here's a comprehensive list of all parameters that can be used across different
|
||||
| `deepseek_base_url` | Base URL for DeepSeek API | DeepSeek |
|
||||
| `xai_base_url` | Base URL for XAI API | XAI |
|
||||
| `lmstudio_base_url` | Base URL for LM Studio API | LM Studio |
|
||||
| `langchain_provider` | Provider for Langchain | Langchain |
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Provider |
|
||||
|
||||
@@ -12,19 +12,24 @@ For a complete list of available chat models supported by LangChain, refer to th
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
# Set necessary environment variables for your chosen LangChain provider
|
||||
# For example, if using OpenAI through LangChain:
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
|
||||
# Initialize a LangChain model directly
|
||||
openai_model = ChatOpenAI(
|
||||
model="gpt-4o",
|
||||
temperature=0.2,
|
||||
max_tokens=2000
|
||||
)
|
||||
|
||||
# Pass the initialized model to the config
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "langchain",
|
||||
"config": {
|
||||
"langchain_provider": "OpenAI",
|
||||
"model": "gpt-4o",
|
||||
"temperature": 0.2,
|
||||
"max_tokens": 2000,
|
||||
"model": openai_model
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -53,15 +58,15 @@ LangChain supports a wide range of LLM providers, including:
|
||||
- HuggingFace (`HuggingFaceChatEndpoint`)
|
||||
- And many more
|
||||
|
||||
You can specify any supported provider in the `langchain_provider` parameter. For a complete and up-to-date list of available providers, refer to the [LangChain Chat Models documentation](https://python.langchain.com/docs/integrations/chat).
|
||||
You can use any of these model instances directly in your configuration. For a complete and up-to-date list of available providers, refer to the [LangChain Chat Models documentation](https://python.langchain.com/docs/integrations/chat).
|
||||
|
||||
## Provider-Specific Configuration
|
||||
|
||||
When using LangChain as a provider, you'll need to:
|
||||
|
||||
1. Set the appropriate environment variables for your chosen LLM provider
|
||||
2. Specify the LangChain provider class name in the `langchain_provider` parameter
|
||||
3. Include any additional configuration parameters required by the specific provider
|
||||
2. Import and initialize the specific model class you want to use
|
||||
3. Pass the initialized model instance to the config
|
||||
|
||||
<Note>
|
||||
Make sure to install the necessary LangChain packages and any provider-specific dependencies.
|
||||
|
||||
@@ -161,7 +161,8 @@
|
||||
"components/embedders/models/vertexai",
|
||||
"components/embedders/models/gemini",
|
||||
"components/embedders/models/lmstudio",
|
||||
"components/embedders/models/together"
|
||||
"components/embedders/models/together",
|
||||
"components/embedders/models/langchain"
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user