Resolve conflicts (#208)

This commit is contained in:
Deshraj Yadav
2023-07-10 21:50:05 -07:00
committed by GitHub
parent 6936d6983d
commit 9ca836520f
32 changed files with 396 additions and 207 deletions

View File

@@ -1,17 +1,16 @@
import openai
import os
import logging
import os
from string import Template
import openai
from chromadb.utils import embedding_functions
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from embedchain.config import InitConfig, AddConfig, QueryConfig, ChatConfig
from embedchain.config import AddConfig, ChatConfig, InitConfig, QueryConfig
from embedchain.config.QueryConfig import DEFAULT_PROMPT
from embedchain.data_formatter import DataFormatter
from string import Template
gpt4all_model = None
@@ -45,7 +44,8 @@ class EmbedChain:
:param data_type: The type of the data to add.
:param url: The URL where the data is located.
:param config: Optional. The `AddConfig` instance to use as configuration options.
:param config: Optional. The `AddConfig` instance to use as configuration
options.
"""
if config is None:
config = AddConfig()
@@ -62,22 +62,28 @@ class EmbedChain:
:param data_type: The type of the data to add.
:param content: The local data. Refer to the `README` for formatting.
:param config: Optional. The `AddConfig` instance to use as configuration options.
:param config: Optional. The `AddConfig` instance to use as
configuration options.
"""
if config is None:
config = AddConfig()
data_formatter = DataFormatter(data_type, config)
self.user_asks.append([data_type, content])
self.load_and_embed(data_formatter.loader, data_formatter.chunker, content)
self.load_and_embed(
data_formatter.loader,
data_formatter.chunker,
content,
)
def load_and_embed(self, loader, chunker, src):
"""
Loads the data from the given URL, chunks it, and adds it to the database.
Loads the data from the given URL, chunks it, and adds it to database.
:param loader: The loader to use to load the data.
:param chunker: The chunker to use to chunk the data.
:param src: The data to be handled by the loader. Can be a URL for remote sources or local content for local loaders.
:param src: The data to be handled by the loader. Can be a URL for
remote sources or local content for local loaders.
"""
embeddings_data = chunker.create_chunks(loader, src)
documents = embeddings_data["documents"]
@@ -91,8 +97,12 @@ class EmbedChain:
existing_ids = set(existing_docs["ids"])
if len(existing_ids):
data_dict = {id: (doc, meta) for id, doc, meta in zip(ids, documents, metadatas)}
data_dict = {id: value for id, value in data_dict.items() if id not in existing_ids}
data_dict = {
id: (doc, meta) for id, doc, meta in zip(ids, documents, metadatas)
}
data_dict = {
id: value for id, value in data_dict.items() if id not in existing_ids
}
if not data_dict:
print(f"All data from {src} already exists in the database.")
@@ -103,12 +113,10 @@ class EmbedChain:
chunks_before_addition = self.count()
self.collection.add(
documents=documents,
metadatas=list(metadatas),
ids=ids
self.collection.add(documents=documents, metadatas=list(metadatas), ids=ids)
print(
f"Successfully saved {src}. New chunks count: {self.count() - chunks_before_addition}" # noqa:E501
)
print(f"Successfully saved {src}. New chunks count: {self.count() - chunks_before_addition}")
def _format_result(self, results):
return [
@@ -132,7 +140,9 @@ class EmbedChain:
:return: The content of the document that matched your query.
"""
result = self.collection.query(
query_texts=[input_query,],
query_texts=[
input_query,
],
n_results=1,
)
result_formatted = self._format_result(result)
@@ -144,17 +154,21 @@ class EmbedChain:
def generate_prompt(self, input_query, context, config: QueryConfig):
"""
Generates a prompt based on the given query and context, ready to be passed to an LLM
Generates a prompt based on the given query and context, ready to be
passed to an LLM
:param input_query: The query to use.
:param context: Similar documents to the query used as context.
:param config: Optional. The `QueryConfig` instance to use as configuration options.
:param config: Optional. The `QueryConfig` instance to use as
configuration options.
:return: The prompt
"""
if not config.history:
prompt = config.template.substitute(context = context, query = input_query)
prompt = config.template.substitute(context=context, query=input_query)
else:
prompt = config.template.substitute(context = context, query = input_query, history = config.history)
prompt = config.template.substitute(
context=context, query=input_query, history=config.history
)
return prompt
def get_answer_from_llm(self, prompt, config: ChatConfig):
@@ -166,7 +180,7 @@ class EmbedChain:
:param context: Similar documents to the query used as context.
:return: The answer.
"""
return self.get_llm_model_answer(prompt, config)
def query(self, input_query, config: QueryConfig = None):
@@ -176,7 +190,8 @@ class EmbedChain:
LLM as context to get the answer.
:param input_query: The query to use.
:param config: Optional. The `QueryConfig` instance to use as configuration options.
:param config: Optional. The `QueryConfig` instance to use as
configuration options.
:return: The answer to the query.
"""
if config is None:
@@ -188,7 +203,6 @@ class EmbedChain:
logging.info(f"Answer: {answer}")
return answer
def chat(self, input_query, config: ChatConfig = None):
"""
Queries the vector database on the given input query.
@@ -197,30 +211,31 @@ class EmbedChain:
Maintains last 5 conversations in memory.
:param input_query: The query to use.
:param config: Optional. The `ChatConfig` instance to use as configuration options.
:param config: Optional. The `ChatConfig` instance to use as
configuration options.
:return: The answer to the query.
"""
context = self.retrieve_from_database(input_query)
global memory
chat_history = memory.load_memory_variables({})["history"]
if config is None:
config = ChatConfig()
if chat_history:
config.set_history(chat_history)
prompt = self.generate_prompt(input_query, context, config)
logging.info(f"Prompt: {prompt}")
answer = self.get_answer_from_llm(prompt, config)
memory.chat_memory.add_user_message(input_query)
if isinstance(answer, str):
memory.chat_memory.add_ai_message(answer)
logging.info(f"Answer: {answer}")
return answer
else:
#this is a streamed response and needs to be handled differently.
# this is a streamed response and needs to be handled differently.
return self._stream_chat_response(answer)
def _stream_chat_response(self, answer):
@@ -230,7 +245,6 @@ class EmbedChain:
yield chunk
memory.chat_memory.add_ai_message(streamed_answer)
logging.info(f"Answer: {streamed_answer}")
def dry_run(self, input_query, config: QueryConfig = None):
"""
@@ -242,7 +256,8 @@ class EmbedChain:
the `max_tokens` parameter.
:param input_query: The query to use.
:param config: Optional. The `QueryConfig` instance to use as configuration options.
:param config: Optional. The `QueryConfig` instance to use as
configuration options.
:return: The prompt that would be sent to the LLM
"""
if config is None:
@@ -260,7 +275,6 @@ class EmbedChain:
"""
return self.collection.count()
def reset(self):
"""
Resets the database. Deletes all embeddings irreversibly.
@@ -288,35 +302,31 @@ class App(EmbedChain):
super().__init__(config)
def get_llm_model_answer(self, prompt, config: ChatConfig):
messages = []
messages.append({
"role": "user", "content": prompt
})
messages.append({"role": "user", "content": prompt})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
temperature=0,
max_tokens=1000,
top_p=1,
stream=config.stream
stream=config.stream,
)
if config.stream:
return self._stream_llm_model_response(response)
else:
return response["choices"][0]["message"]["content"]
def _stream_llm_model_response(self, response):
"""
This is a generator for streaming response from the OpenAI completions API
"""
for line in response:
chunk = line['choices'][0].get('delta', {}).get('content', '')
chunk = line["choices"][0].get("delta", {}).get("content", "")
yield chunk
class OpenSourceApp(EmbedChain):
"""
The OpenSource app.
@@ -330,20 +340,24 @@ class OpenSourceApp(EmbedChain):
def __init__(self, config: InitConfig = None):
"""
:param config: InitConfig instance to load as configuration. Optional. `ef` defaults to open source.
:param config: InitConfig instance to load as configuration. Optional.
`ef` defaults to open source.
"""
print("Loading open source embedding model. This may take some time...")
print(
"Loading open source embedding model. This may take some time..."
) # noqa:E501
if not config:
config = InitConfig(
ef = embedding_functions.SentenceTransformerEmbeddingFunction(
ef=embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"
)
)
elif not config.ef:
config._set_embedding_function(
embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"
))
embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"
)
)
print("Successfully loaded open source embedding model.")
super().__init__(config)
@@ -353,10 +367,7 @@ class OpenSourceApp(EmbedChain):
global gpt4all_model
if gpt4all_model is None:
gpt4all_model = GPT4All("orca-mini-3b.ggmlv3.q4_0.bin")
response = gpt4all_model.generate(
prompt=prompt,
streaming=config.stream
)
response = gpt4all_model.generate(prompt=prompt, streaming=config.stream)
return response
@@ -368,12 +379,11 @@ class EmbedChainPersonApp:
:param person: name of the person, better if its a well known person.
:param config: InitConfig instance to load as configuration.
"""
def __init__(self, person, config: InitConfig = None):
self.person = person
self.person_prompt = f"You are {person}. Whatever you say, you will always say in {person} style."
self.template = Template(
self.person_prompt + " " + DEFAULT_PROMPT
)
self.person_prompt = f"You are {person}. Whatever you say, you will always say in {person} style." # noqa:E501
self.template = Template(self.person_prompt + " " + DEFAULT_PROMPT)
if config is None:
config = InitConfig()
super().__init__(config)
@@ -384,6 +394,7 @@ class PersonApp(EmbedChainPersonApp, App):
The Person app.
Extends functionality from EmbedChainPersonApp and App
"""
def query(self, input_query, config: QueryConfig = None):
query_config = QueryConfig(
template=self.template,
@@ -392,7 +403,7 @@ class PersonApp(EmbedChainPersonApp, App):
def chat(self, input_query, config: ChatConfig = None):
chat_config = ChatConfig(
template = self.template,
template=self.template,
)
return super().chat(input_query, chat_config)
@@ -402,6 +413,7 @@ class PersonOpenSourceApp(EmbedChainPersonApp, OpenSourceApp):
The Person app.
Extends functionality from EmbedChainPersonApp and OpenSourceApp
"""
def query(self, input_query, config: QueryConfig = None):
query_config = QueryConfig(
template=self.template,
@@ -410,6 +422,6 @@ class PersonOpenSourceApp(EmbedChainPersonApp, OpenSourceApp):
def chat(self, input_query, config: ChatConfig = None):
chat_config = ChatConfig(
template = self.template,
template=self.template,
)
return super().chat(input_query, chat_config)
return super().chat(input_query, chat_config)