Add Faiss Support (#2461)
This commit is contained in:
2
Makefile
2
Makefile
@@ -13,7 +13,7 @@ install:
|
||||
install_all:
|
||||
poetry install
|
||||
poetry run pip install groq together boto3 litellm ollama chromadb weaviate weaviate-client sentence_transformers vertexai \
|
||||
google-generativeai elasticsearch opensearch-py vecs pinecone pinecone-text
|
||||
google-generativeai elasticsearch opensearch-py vecs pinecone pinecone-text faiss-cpu
|
||||
|
||||
# Format code with ruff
|
||||
format:
|
||||
|
||||
72
docs/components/vectordbs/dbs/faiss.mdx
Normal file
72
docs/components/vectordbs/dbs/faiss.mdx
Normal file
@@ -0,0 +1,72 @@
|
||||
[FAISS](https://github.com/facebookresearch/faiss) is a library for efficient similarity search and clustering of dense vectors. It is designed to work with large-scale datasets and provides a high-performance search engine for vector data. FAISS is optimized for memory usage and search speed, making it an excellent choice for production environments.
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "sk-xx"
|
||||
|
||||
config = {
|
||||
"vector_store": {
|
||||
"provider": "faiss",
|
||||
"config": {
|
||||
"collection_name": "test",
|
||||
"path": "/tmp/faiss_memories",
|
||||
"distance_strategy": "euclidean"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
messages = [
|
||||
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
|
||||
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
|
||||
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
|
||||
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
|
||||
]
|
||||
m.add(messages, user_id="alice", metadata={"category": "movies"})
|
||||
```
|
||||
|
||||
### Installation
|
||||
|
||||
To use FAISS in your mem0 project, you need to install the appropriate FAISS package for your environment:
|
||||
|
||||
```bash
|
||||
# For CPU version
|
||||
pip install faiss-cpu
|
||||
|
||||
# For GPU version (requires CUDA)
|
||||
pip install faiss-gpu
|
||||
```
|
||||
|
||||
### Config
|
||||
|
||||
Here are the parameters available for configuring FAISS:
|
||||
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `collection_name` | The name of the collection | `mem0` |
|
||||
| `path` | Path to store FAISS index and metadata | `/tmp/faiss/<collection_name>` |
|
||||
| `distance_strategy` | Distance metric strategy to use (options: 'euclidean', 'inner_product', 'cosine') | `euclidean` |
|
||||
| `normalize_L2` | Whether to normalize L2 vectors (only applicable for euclidean distance) | `False` |
|
||||
|
||||
### Performance Considerations
|
||||
|
||||
FAISS offers several advantages for vector search:
|
||||
|
||||
1. **Efficiency**: FAISS is optimized for memory usage and speed, making it suitable for large-scale applications.
|
||||
2. **Offline Support**: FAISS works entirely locally, with no need for external servers or API calls.
|
||||
3. **Storage Options**: Vectors can be stored in-memory for maximum speed or persisted to disk.
|
||||
4. **Multiple Index Types**: FAISS supports different index types optimized for various use cases (though mem0 currently uses the basic flat index).
|
||||
|
||||
### Distance Strategies
|
||||
|
||||
FAISS in mem0 supports three distance strategies:
|
||||
|
||||
- **euclidean**: L2 distance, suitable for most embedding models
|
||||
- **inner_product**: Dot product similarity, useful for some specialized embeddings
|
||||
- **cosine**: Cosine similarity, best for comparing semantic similarity regardless of vector magnitude
|
||||
|
||||
When using `cosine` or `inner_product` with normalized vectors, you may want to set `normalize_L2=True` for better results.
|
||||
@@ -27,6 +27,7 @@ See the list of supported vector databases below.
|
||||
<Card title="Supabase" href="/components/vectordbs/dbs/supabase"></Card>
|
||||
<Card title="Vertex AI Vector Search" href="/components/vectordbs/dbs/vertex_ai_vector_search"></Card>
|
||||
<Card title="Weaviate" href="/components/vectordbs/dbs/weaviate"></Card>
|
||||
<Card title="FAISS" href="/components/vectordbs/dbs/faiss"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## Usage
|
||||
|
||||
38
mem0/configs/vector_stores/faiss.py
Normal file
38
mem0/configs/vector_stores/faiss.py
Normal file
@@ -0,0 +1,38 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
|
||||
|
||||
class FAISSConfig(BaseModel):
|
||||
collection_name: str = Field("mem0", description="Default name for the collection")
|
||||
path: Optional[str] = Field(None, description="Path to store FAISS index and metadata")
|
||||
distance_strategy: str = Field(
|
||||
"euclidean", description="Distance strategy to use. Options: 'euclidean', 'inner_product', 'cosine'"
|
||||
)
|
||||
normalize_L2: bool = Field(
|
||||
False, description="Whether to normalize L2 vectors (only applicable for euclidean distance)"
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_distance_strategy(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
distance_strategy = values.get("distance_strategy")
|
||||
if distance_strategy and distance_strategy not in ["euclidean", "inner_product", "cosine"]:
|
||||
raise ValueError("Invalid distance_strategy. Must be one of: 'euclidean', 'inner_product', 'cosine'")
|
||||
return values
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_extra_fields(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
allowed_fields = set(cls.model_fields.keys())
|
||||
input_fields = set(values.keys())
|
||||
extra_fields = input_fields - allowed_fields
|
||||
if extra_fields:
|
||||
raise ValueError(
|
||||
f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}"
|
||||
)
|
||||
return values
|
||||
|
||||
model_config = {
|
||||
"arbitrary_types_allowed": True,
|
||||
}
|
||||
@@ -76,6 +76,7 @@ class VectorStoreFactory:
|
||||
"opensearch": "mem0.vector_stores.opensearch.OpenSearchDB",
|
||||
"supabase": "mem0.vector_stores.supabase.Supabase",
|
||||
"weaviate": "mem0.vector_stores.weaviate.Weaviate",
|
||||
"faiss": "mem0.vector_stores.faiss.FAISS",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -23,6 +23,7 @@ class VectorStoreConfig(BaseModel):
|
||||
"opensearch": "OpenSearchConfig",
|
||||
"supabase": "SupabaseConfig",
|
||||
"weaviate": "WeaviateConfig",
|
||||
"faiss": "FAISSConfig",
|
||||
}
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
||||
464
mem0/vector_stores/faiss.py
Normal file
464
mem0/vector_stores/faiss.py
Normal file
@@ -0,0 +1,464 @@
|
||||
import logging
|
||||
import os
|
||||
import pickle
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
from pydantic import BaseModel
|
||||
|
||||
try:
|
||||
import faiss
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import faiss python package. "
|
||||
"Please install it with `pip install faiss-gpu` (for CUDA supported GPU) "
|
||||
"or `pip install faiss-cpu` (depending on Python version)."
|
||||
)
|
||||
|
||||
from mem0.vector_stores.base import VectorStoreBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OutputData(BaseModel):
|
||||
id: Optional[str] # memory id
|
||||
score: Optional[float] # distance
|
||||
payload: Optional[Dict] # metadata
|
||||
|
||||
|
||||
class FAISS(VectorStoreBase):
|
||||
def __init__(
|
||||
self,
|
||||
collection_name: str,
|
||||
path: Optional[str] = None,
|
||||
distance_strategy: str = "euclidean",
|
||||
normalize_L2: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize the FAISS vector store.
|
||||
|
||||
Args:
|
||||
collection_name (str): Name of the collection.
|
||||
path (str, optional): Path for local FAISS database. Defaults to None.
|
||||
distance_strategy (str, optional): Distance strategy to use. Options: 'euclidean', 'inner_product', 'cosine'.
|
||||
Defaults to "euclidean".
|
||||
normalize_L2 (bool, optional): Whether to normalize L2 vectors. Only applicable for euclidean distance.
|
||||
Defaults to False.
|
||||
"""
|
||||
self.collection_name = collection_name
|
||||
self.path = path or f"/tmp/faiss/{collection_name}"
|
||||
self.distance_strategy = distance_strategy
|
||||
self.normalize_L2 = normalize_L2
|
||||
|
||||
# Initialize storage structures
|
||||
self.index = None
|
||||
self.docstore = {}
|
||||
self.index_to_id = {}
|
||||
|
||||
# Create directory if it doesn't exist
|
||||
if self.path:
|
||||
os.makedirs(os.path.dirname(self.path), exist_ok=True)
|
||||
|
||||
# Try to load existing index if available
|
||||
index_path = f"{self.path}/{collection_name}.faiss"
|
||||
docstore_path = f"{self.path}/{collection_name}.pkl"
|
||||
if os.path.exists(index_path) and os.path.exists(docstore_path):
|
||||
self._load(index_path, docstore_path)
|
||||
else:
|
||||
self.create_col(collection_name)
|
||||
|
||||
def _load(self, index_path: str, docstore_path: str):
|
||||
"""
|
||||
Load FAISS index and docstore from disk.
|
||||
|
||||
Args:
|
||||
index_path (str): Path to FAISS index file.
|
||||
docstore_path (str): Path to docstore pickle file.
|
||||
"""
|
||||
try:
|
||||
self.index = faiss.read_index(index_path)
|
||||
with open(docstore_path, "rb") as f:
|
||||
self.docstore, self.index_to_id = pickle.load(f)
|
||||
logger.info(f"Loaded FAISS index from {index_path} with {self.index.ntotal} vectors")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load FAISS index: {e}")
|
||||
|
||||
self.docstore = {}
|
||||
self.index_to_id = {}
|
||||
|
||||
def _save(self):
|
||||
"""Save FAISS index and docstore to disk."""
|
||||
if not self.path or not self.index:
|
||||
return
|
||||
|
||||
try:
|
||||
os.makedirs(self.path, exist_ok=True)
|
||||
index_path = f"{self.path}/{self.collection_name}.faiss"
|
||||
docstore_path = f"{self.path}/{self.collection_name}.pkl"
|
||||
|
||||
faiss.write_index(self.index, index_path)
|
||||
with open(docstore_path, "wb") as f:
|
||||
pickle.dump((self.docstore, self.index_to_id), f)
|
||||
logger.info(f"Saved FAISS index to {index_path} with {self.index.ntotal} vectors")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to save FAISS index: {e}")
|
||||
|
||||
def _parse_output(self, scores, ids, limit=None) -> List[OutputData]:
|
||||
"""
|
||||
Parse the output data.
|
||||
|
||||
Args:
|
||||
scores: Similarity scores from FAISS.
|
||||
ids: Indices from FAISS.
|
||||
limit: Maximum number of results to return.
|
||||
|
||||
Returns:
|
||||
List[OutputData]: Parsed output data.
|
||||
"""
|
||||
if limit is None:
|
||||
limit = len(ids)
|
||||
|
||||
results = []
|
||||
for i in range(min(len(ids), limit)):
|
||||
if ids[i] == -1: # FAISS returns -1 for empty results
|
||||
continue
|
||||
|
||||
index_id = int(ids[i])
|
||||
vector_id = self.index_to_id.get(index_id)
|
||||
if vector_id is None:
|
||||
continue
|
||||
|
||||
payload = self.docstore.get(vector_id)
|
||||
if payload is None:
|
||||
continue
|
||||
|
||||
payload_copy = payload.copy()
|
||||
|
||||
score = float(scores[i])
|
||||
entry = OutputData(
|
||||
id=vector_id,
|
||||
score=score,
|
||||
payload=payload_copy,
|
||||
)
|
||||
results.append(entry)
|
||||
|
||||
return results
|
||||
|
||||
def create_col(self, name: str, vector_size: int = 1536, distance: str = None):
|
||||
"""
|
||||
Create a new collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_size (int, optional): Dimensionality of vectors. Defaults to 1536.
|
||||
distance (str, optional): Distance metric to use. Overrides the distance_strategy
|
||||
passed during initialization. Defaults to None.
|
||||
|
||||
Returns:
|
||||
self: The FAISS instance.
|
||||
"""
|
||||
distance_strategy = distance or self.distance_strategy
|
||||
|
||||
# Create index based on distance strategy
|
||||
if distance_strategy.lower() == "inner_product" or distance_strategy.lower() == "cosine":
|
||||
self.index = faiss.IndexFlatIP(vector_size)
|
||||
else:
|
||||
self.index = faiss.IndexFlatL2(vector_size)
|
||||
|
||||
self.collection_name = name
|
||||
|
||||
self._save()
|
||||
|
||||
return self
|
||||
|
||||
def insert(
|
||||
self,
|
||||
vectors: List[list],
|
||||
payloads: Optional[List[Dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
):
|
||||
"""
|
||||
Insert vectors into a collection.
|
||||
|
||||
Args:
|
||||
vectors (List[list]): List of vectors to insert.
|
||||
payloads (Optional[List[Dict]], optional): List of payloads corresponding to vectors. Defaults to None.
|
||||
ids (Optional[List[str]], optional): List of IDs corresponding to vectors. Defaults to None.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in range(len(vectors))]
|
||||
|
||||
if payloads is None:
|
||||
payloads = [{} for _ in range(len(vectors))]
|
||||
|
||||
if len(vectors) != len(ids) or len(vectors) != len(payloads):
|
||||
raise ValueError("Vectors, payloads, and IDs must have the same length")
|
||||
|
||||
vectors_np = np.array(vectors, dtype=np.float32)
|
||||
|
||||
if self.normalize_L2 and self.distance_strategy.lower() == "euclidean":
|
||||
faiss.normalize_L2(vectors_np)
|
||||
|
||||
self.index.add(vectors_np)
|
||||
|
||||
starting_idx = len(self.index_to_id)
|
||||
for i, (vector_id, payload) in enumerate(zip(ids, payloads)):
|
||||
self.docstore[vector_id] = payload.copy()
|
||||
self.index_to_id[starting_idx + i] = vector_id
|
||||
|
||||
self._save()
|
||||
|
||||
logger.info(f"Inserted {len(vectors)} vectors into collection {self.collection_name}")
|
||||
|
||||
def search(
|
||||
self, query: str, vectors: List[list], limit: int = 5, filters: Optional[Dict] = None
|
||||
) -> List[OutputData]:
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
query (str): Query (not used, kept for API compatibility).
|
||||
vectors (List[list]): List of vectors to search.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[OutputData]: Search results.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
query_vectors = np.array(vectors, dtype=np.float32)
|
||||
|
||||
if len(query_vectors.shape) == 1:
|
||||
query_vectors = query_vectors.reshape(1, -1)
|
||||
|
||||
if self.normalize_L2 and self.distance_strategy.lower() == "euclidean":
|
||||
faiss.normalize_L2(query_vectors)
|
||||
|
||||
fetch_k = limit * 2 if filters else limit
|
||||
scores, indices = self.index.search(query_vectors, fetch_k)
|
||||
|
||||
results = self._parse_output(scores[0], indices[0], limit)
|
||||
|
||||
if filters:
|
||||
filtered_results = []
|
||||
for result in results:
|
||||
if self._apply_filters(result.payload, filters):
|
||||
filtered_results.append(result)
|
||||
if len(filtered_results) >= limit:
|
||||
break
|
||||
results = filtered_results[:limit]
|
||||
|
||||
return results
|
||||
|
||||
def _apply_filters(self, payload: Dict, filters: Dict) -> bool:
|
||||
"""
|
||||
Apply filters to a payload.
|
||||
|
||||
Args:
|
||||
payload (Dict): Payload to filter.
|
||||
filters (Dict): Filters to apply.
|
||||
|
||||
Returns:
|
||||
bool: True if payload passes filters, False otherwise.
|
||||
"""
|
||||
if not filters or not payload:
|
||||
return True
|
||||
|
||||
for key, value in filters.items():
|
||||
if key not in payload:
|
||||
return False
|
||||
|
||||
if isinstance(value, list):
|
||||
if payload[key] not in value:
|
||||
return False
|
||||
elif payload[key] != value:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def delete(self, vector_id: str):
|
||||
"""
|
||||
Delete a vector by ID.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to delete.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
index_to_delete = None
|
||||
for idx, vid in self.index_to_id.items():
|
||||
if vid == vector_id:
|
||||
index_to_delete = idx
|
||||
break
|
||||
|
||||
if index_to_delete is not None:
|
||||
self.docstore.pop(vector_id, None)
|
||||
self.index_to_id.pop(index_to_delete, None)
|
||||
|
||||
self._save()
|
||||
|
||||
logger.info(f"Deleted vector {vector_id} from collection {self.collection_name}")
|
||||
else:
|
||||
logger.warning(f"Vector {vector_id} not found in collection {self.collection_name}")
|
||||
|
||||
def update(
|
||||
self,
|
||||
vector_id: str,
|
||||
vector: Optional[List[float]] = None,
|
||||
payload: Optional[Dict] = None,
|
||||
):
|
||||
"""
|
||||
Update a vector and its payload.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to update.
|
||||
vector (Optional[List[float]], optional): Updated vector. Defaults to None.
|
||||
payload (Optional[Dict], optional): Updated payload. Defaults to None.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
if vector_id not in self.docstore:
|
||||
raise ValueError(f"Vector {vector_id} not found")
|
||||
|
||||
current_payload = self.docstore[vector_id].copy()
|
||||
|
||||
if payload is not None:
|
||||
self.docstore[vector_id] = payload.copy()
|
||||
current_payload = self.docstore[vector_id].copy()
|
||||
|
||||
if vector is not None:
|
||||
self.delete(vector_id)
|
||||
self.insert([vector], [current_payload], [vector_id])
|
||||
else:
|
||||
self._save()
|
||||
|
||||
logger.info(f"Updated vector {vector_id} in collection {self.collection_name}")
|
||||
|
||||
def get(self, vector_id: str) -> OutputData:
|
||||
"""
|
||||
Retrieve a vector by ID.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to retrieve.
|
||||
|
||||
Returns:
|
||||
OutputData: Retrieved vector.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
if vector_id not in self.docstore:
|
||||
return None
|
||||
|
||||
payload = self.docstore[vector_id].copy()
|
||||
|
||||
return OutputData(
|
||||
id=vector_id,
|
||||
score=None,
|
||||
payload=payload,
|
||||
)
|
||||
|
||||
def list_cols(self) -> List[str]:
|
||||
"""
|
||||
List all collections.
|
||||
|
||||
Returns:
|
||||
List[str]: List of collection names.
|
||||
"""
|
||||
if not self.path:
|
||||
return [self.collection_name] if self.index else []
|
||||
|
||||
try:
|
||||
collections = []
|
||||
path = Path(self.path).parent
|
||||
for file in path.glob("*.faiss"):
|
||||
collections.append(file.stem)
|
||||
return collections
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to list collections: {e}")
|
||||
return [self.collection_name] if self.index else []
|
||||
|
||||
def delete_col(self):
|
||||
"""
|
||||
Delete a collection.
|
||||
"""
|
||||
if self.path:
|
||||
try:
|
||||
index_path = f"{self.path}/{self.collection_name}.faiss"
|
||||
docstore_path = f"{self.path}/{self.collection_name}.pkl"
|
||||
|
||||
if os.path.exists(index_path):
|
||||
os.remove(index_path)
|
||||
if os.path.exists(docstore_path):
|
||||
os.remove(docstore_path)
|
||||
|
||||
logger.info(f"Deleted collection {self.collection_name}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete collection: {e}")
|
||||
|
||||
self.index = None
|
||||
self.docstore = {}
|
||||
self.index_to_id = {}
|
||||
|
||||
def col_info(self) -> Dict:
|
||||
"""
|
||||
Get information about a collection.
|
||||
|
||||
Returns:
|
||||
Dict: Collection information.
|
||||
"""
|
||||
if self.index is None:
|
||||
return {"name": self.collection_name, "count": 0}
|
||||
|
||||
return {
|
||||
"name": self.collection_name,
|
||||
"count": self.index.ntotal,
|
||||
"dimension": self.index.d,
|
||||
"distance": self.distance_strategy,
|
||||
}
|
||||
|
||||
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[OutputData]:
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Args:
|
||||
filters (Optional[Dict], optional): Filters to apply to the list. Defaults to None.
|
||||
limit (int, optional): Number of vectors to return. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
List[OutputData]: List of vectors.
|
||||
"""
|
||||
if self.index is None:
|
||||
return []
|
||||
|
||||
results = []
|
||||
count = 0
|
||||
|
||||
for vector_id, payload in self.docstore.items():
|
||||
if filters and not self._apply_filters(payload, filters):
|
||||
continue
|
||||
|
||||
payload_copy = payload.copy()
|
||||
|
||||
results.append(
|
||||
OutputData(
|
||||
id=vector_id,
|
||||
score=None,
|
||||
payload=payload_copy,
|
||||
)
|
||||
)
|
||||
|
||||
count += 1
|
||||
if count >= limit:
|
||||
break
|
||||
|
||||
return [results]
|
||||
@@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "mem0ai"
|
||||
version = "0.1.77"
|
||||
version = "0.1.78"
|
||||
description = "Long-term memory for AI Agents"
|
||||
authors = ["Mem0 <founders@mem0.ai>"]
|
||||
exclude = [
|
||||
|
||||
314
tests/vector_stores/test_faiss.py
Normal file
314
tests/vector_stores/test_faiss.py
Normal file
@@ -0,0 +1,314 @@
|
||||
import os
|
||||
import tempfile
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import faiss
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from mem0.vector_stores.faiss import FAISS, OutputData
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_faiss_index():
|
||||
index = Mock(spec=faiss.IndexFlatL2)
|
||||
index.d = 128 # Dimension of the vectors
|
||||
index.ntotal = 0 # Number of vectors in the index
|
||||
return index
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def faiss_instance(mock_faiss_index):
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Mock the faiss index creation
|
||||
with patch('faiss.IndexFlatL2', return_value=mock_faiss_index):
|
||||
# Mock the faiss.write_index function
|
||||
with patch('faiss.write_index'):
|
||||
# Create a FAISS instance with a temporary directory
|
||||
faiss_store = FAISS(
|
||||
collection_name="test_collection",
|
||||
path=os.path.join(temp_dir, "test_faiss"),
|
||||
distance_strategy="euclidean",
|
||||
)
|
||||
# Set up the mock index
|
||||
faiss_store.index = mock_faiss_index
|
||||
yield faiss_store
|
||||
|
||||
|
||||
def test_create_col(faiss_instance, mock_faiss_index):
|
||||
# Test creating a collection with euclidean distance
|
||||
with patch('faiss.IndexFlatL2', return_value=mock_faiss_index) as mock_index_flat_l2:
|
||||
with patch('faiss.write_index'):
|
||||
faiss_instance.create_col(name="new_collection", vector_size=256)
|
||||
mock_index_flat_l2.assert_called_once_with(256)
|
||||
|
||||
# Test creating a collection with inner product distance
|
||||
with patch('faiss.IndexFlatIP', return_value=mock_faiss_index) as mock_index_flat_ip:
|
||||
with patch('faiss.write_index'):
|
||||
faiss_instance.create_col(name="new_collection", vector_size=256, distance="inner_product")
|
||||
mock_index_flat_ip.assert_called_once_with(256)
|
||||
|
||||
|
||||
def test_insert(faiss_instance, mock_faiss_index):
|
||||
# Prepare test data
|
||||
vectors = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
|
||||
payloads = [{"name": "vector1"}, {"name": "vector2"}]
|
||||
ids = ["id1", "id2"]
|
||||
|
||||
# Mock the numpy array conversion
|
||||
with patch('numpy.array', return_value=np.array(vectors, dtype=np.float32)) as mock_np_array:
|
||||
# Mock index.add
|
||||
mock_faiss_index.add.return_value = None
|
||||
|
||||
# Call insert
|
||||
faiss_instance.insert(vectors=vectors, payloads=payloads, ids=ids)
|
||||
|
||||
# Verify numpy.array was called
|
||||
mock_np_array.assert_called_once_with(vectors, dtype=np.float32)
|
||||
|
||||
# Verify index.add was called
|
||||
mock_faiss_index.add.assert_called_once()
|
||||
|
||||
# Verify docstore and index_to_id were updated
|
||||
assert faiss_instance.docstore["id1"] == {"name": "vector1"}
|
||||
assert faiss_instance.docstore["id2"] == {"name": "vector2"}
|
||||
assert faiss_instance.index_to_id[0] == "id1"
|
||||
assert faiss_instance.index_to_id[1] == "id2"
|
||||
|
||||
|
||||
def test_search(faiss_instance, mock_faiss_index):
|
||||
# Prepare test data
|
||||
query_vector = [0.1, 0.2, 0.3]
|
||||
|
||||
# Setup the docstore and index_to_id mapping
|
||||
faiss_instance.docstore = {
|
||||
"id1": {"name": "vector1"},
|
||||
"id2": {"name": "vector2"}
|
||||
}
|
||||
faiss_instance.index_to_id = {0: "id1", 1: "id2"}
|
||||
|
||||
# First, create the mock for the search return values
|
||||
search_scores = np.array([[0.9, 0.8]])
|
||||
search_indices = np.array([[0, 1]])
|
||||
mock_faiss_index.search.return_value = (search_scores, search_indices)
|
||||
|
||||
# Then patch numpy.array only for the query vector conversion
|
||||
with patch('numpy.array') as mock_np_array:
|
||||
mock_np_array.return_value = np.array(query_vector, dtype=np.float32)
|
||||
|
||||
# Then patch _parse_output to return the expected results
|
||||
expected_results = [
|
||||
OutputData(id="id1", score=0.9, payload={"name": "vector1"}),
|
||||
OutputData(id="id2", score=0.8, payload={"name": "vector2"})
|
||||
]
|
||||
|
||||
with patch.object(faiss_instance, '_parse_output', return_value=expected_results):
|
||||
# Call search
|
||||
results = faiss_instance.search(query="test query", vectors=query_vector, limit=2)
|
||||
|
||||
# Verify numpy.array was called (but we don't check exact call arguments since it's complex)
|
||||
assert mock_np_array.called
|
||||
|
||||
# Verify index.search was called
|
||||
mock_faiss_index.search.assert_called_once()
|
||||
|
||||
# Verify results
|
||||
assert len(results) == 2
|
||||
assert results[0].id == "id1"
|
||||
assert results[0].score == 0.9
|
||||
assert results[0].payload == {"name": "vector1"}
|
||||
assert results[1].id == "id2"
|
||||
assert results[1].score == 0.8
|
||||
assert results[1].payload == {"name": "vector2"}
|
||||
|
||||
|
||||
def test_search_with_filters(faiss_instance, mock_faiss_index):
|
||||
# Prepare test data
|
||||
query_vector = [0.1, 0.2, 0.3]
|
||||
|
||||
# Setup the docstore and index_to_id mapping
|
||||
faiss_instance.docstore = {
|
||||
"id1": {"name": "vector1", "category": "A"},
|
||||
"id2": {"name": "vector2", "category": "B"}
|
||||
}
|
||||
faiss_instance.index_to_id = {0: "id1", 1: "id2"}
|
||||
|
||||
# First set up the search return values
|
||||
search_scores = np.array([[0.9, 0.8]])
|
||||
search_indices = np.array([[0, 1]])
|
||||
mock_faiss_index.search.return_value = (search_scores, search_indices)
|
||||
|
||||
# Patch numpy.array for query vector conversion
|
||||
with patch('numpy.array') as mock_np_array:
|
||||
mock_np_array.return_value = np.array(query_vector, dtype=np.float32)
|
||||
|
||||
# Directly mock the _parse_output method to return our expected values
|
||||
# We're simulating that _parse_output filters to just the first result
|
||||
all_results = [
|
||||
OutputData(id="id1", score=0.9, payload={"name": "vector1", "category": "A"}),
|
||||
OutputData(id="id2", score=0.8, payload={"name": "vector2", "category": "B"})
|
||||
]
|
||||
|
||||
filtered_results = [all_results[0]] # Just the "category": "A" result
|
||||
|
||||
# Create a side_effect function that returns all results first (for _parse_output)
|
||||
# then returns filtered results (for the filters)
|
||||
parse_output_mock = Mock(side_effect=[all_results, filtered_results])
|
||||
|
||||
# Replace the _apply_filters method to handle our test case
|
||||
with patch.object(faiss_instance, '_parse_output', return_value=all_results):
|
||||
with patch.object(faiss_instance, '_apply_filters', side_effect=lambda p, f: p.get("category") == "A"):
|
||||
# Call search with filters
|
||||
results = faiss_instance.search(
|
||||
query="test query",
|
||||
vectors=query_vector,
|
||||
limit=2,
|
||||
filters={"category": "A"}
|
||||
)
|
||||
|
||||
# Verify numpy.array was called
|
||||
assert mock_np_array.called
|
||||
|
||||
# Verify index.search was called
|
||||
mock_faiss_index.search.assert_called_once()
|
||||
|
||||
# Verify filtered results - since we've mocked everything,
|
||||
# we should get just the result we want
|
||||
assert len(results) == 1
|
||||
assert results[0].id == "id1"
|
||||
assert results[0].score == 0.9
|
||||
assert results[0].payload == {"name": "vector1", "category": "A"}
|
||||
|
||||
|
||||
def test_delete(faiss_instance):
|
||||
# Setup the docstore and index_to_id mapping
|
||||
faiss_instance.docstore = {
|
||||
"id1": {"name": "vector1"},
|
||||
"id2": {"name": "vector2"}
|
||||
}
|
||||
faiss_instance.index_to_id = {0: "id1", 1: "id2"}
|
||||
|
||||
# Call delete
|
||||
faiss_instance.delete(vector_id="id1")
|
||||
|
||||
# Verify the vector was removed from docstore and index_to_id
|
||||
assert "id1" not in faiss_instance.docstore
|
||||
assert 0 not in faiss_instance.index_to_id
|
||||
assert "id2" in faiss_instance.docstore
|
||||
assert 1 in faiss_instance.index_to_id
|
||||
|
||||
|
||||
def test_update(faiss_instance, mock_faiss_index):
|
||||
# Setup the docstore and index_to_id mapping
|
||||
faiss_instance.docstore = {
|
||||
"id1": {"name": "vector1"},
|
||||
"id2": {"name": "vector2"}
|
||||
}
|
||||
faiss_instance.index_to_id = {0: "id1", 1: "id2"}
|
||||
|
||||
# Test updating payload only
|
||||
faiss_instance.update(vector_id="id1", payload={"name": "updated_vector1"})
|
||||
assert faiss_instance.docstore["id1"] == {"name": "updated_vector1"}
|
||||
|
||||
# Test updating vector
|
||||
# This requires mocking the delete and insert methods
|
||||
with patch.object(faiss_instance, 'delete') as mock_delete:
|
||||
with patch.object(faiss_instance, 'insert') as mock_insert:
|
||||
new_vector = [0.7, 0.8, 0.9]
|
||||
faiss_instance.update(vector_id="id2", vector=new_vector)
|
||||
|
||||
# Verify delete and insert were called
|
||||
# Match the actual call signature (positional arg instead of keyword)
|
||||
mock_delete.assert_called_once_with("id2")
|
||||
mock_insert.assert_called_once()
|
||||
|
||||
|
||||
def test_get(faiss_instance):
|
||||
# Setup the docstore
|
||||
faiss_instance.docstore = {
|
||||
"id1": {"name": "vector1"},
|
||||
"id2": {"name": "vector2"}
|
||||
}
|
||||
|
||||
# Test getting an existing vector
|
||||
result = faiss_instance.get(vector_id="id1")
|
||||
assert result.id == "id1"
|
||||
assert result.payload == {"name": "vector1"}
|
||||
assert result.score is None
|
||||
|
||||
# Test getting a non-existent vector
|
||||
result = faiss_instance.get(vector_id="id3")
|
||||
assert result is None
|
||||
|
||||
|
||||
def test_list(faiss_instance):
|
||||
# Setup the docstore
|
||||
faiss_instance.docstore = {
|
||||
"id1": {"name": "vector1", "category": "A"},
|
||||
"id2": {"name": "vector2", "category": "B"},
|
||||
"id3": {"name": "vector3", "category": "A"}
|
||||
}
|
||||
|
||||
# Test listing all vectors
|
||||
results = faiss_instance.list()
|
||||
# Fix the expected result - the list method returns a list of lists
|
||||
assert len(results[0]) == 3
|
||||
|
||||
# Test listing with a limit
|
||||
results = faiss_instance.list(limit=2)
|
||||
assert len(results[0]) == 2
|
||||
|
||||
# Test listing with filters
|
||||
results = faiss_instance.list(filters={"category": "A"})
|
||||
assert len(results[0]) == 2
|
||||
for result in results[0]:
|
||||
assert result.payload["category"] == "A"
|
||||
|
||||
|
||||
def test_col_info(faiss_instance, mock_faiss_index):
|
||||
# Mock index attributes
|
||||
mock_faiss_index.ntotal = 5
|
||||
mock_faiss_index.d = 128
|
||||
|
||||
# Get collection info
|
||||
info = faiss_instance.col_info()
|
||||
|
||||
# Verify the returned info
|
||||
assert info["name"] == "test_collection"
|
||||
assert info["count"] == 5
|
||||
assert info["dimension"] == 128
|
||||
assert info["distance"] == "euclidean"
|
||||
|
||||
|
||||
def test_delete_col(faiss_instance):
|
||||
# Mock the os.remove function
|
||||
with patch('os.remove') as mock_remove:
|
||||
with patch('os.path.exists', return_value=True):
|
||||
# Call delete_col
|
||||
faiss_instance.delete_col()
|
||||
|
||||
# Verify os.remove was called twice (for index and docstore files)
|
||||
assert mock_remove.call_count == 2
|
||||
|
||||
# Verify the internal state was reset
|
||||
assert faiss_instance.index is None
|
||||
assert faiss_instance.docstore == {}
|
||||
assert faiss_instance.index_to_id == {}
|
||||
|
||||
|
||||
def test_normalize_L2(faiss_instance, mock_faiss_index):
|
||||
# Setup a FAISS instance with normalize_L2=True
|
||||
faiss_instance.normalize_L2 = True
|
||||
|
||||
# Prepare test data
|
||||
vectors = [[0.1, 0.2, 0.3]]
|
||||
|
||||
# Mock numpy array conversion
|
||||
with patch('numpy.array', return_value=np.array(vectors, dtype=np.float32)) as mock_np_array:
|
||||
# Mock faiss.normalize_L2
|
||||
with patch('faiss.normalize_L2') as mock_normalize:
|
||||
# Call insert
|
||||
faiss_instance.insert(vectors=vectors, ids=["id1"])
|
||||
|
||||
# Verify faiss.normalize_L2 was called
|
||||
mock_normalize.assert_called_once()
|
||||
Reference in New Issue
Block a user