Add Faiss Support (#2461)

This commit is contained in:
Dev Khant
2025-03-29 13:35:36 +05:30
committed by GitHub
parent cbecbb7b64
commit 9ae23f9c88
9 changed files with 893 additions and 2 deletions

View File

@@ -13,7 +13,7 @@ install:
install_all:
poetry install
poetry run pip install groq together boto3 litellm ollama chromadb weaviate weaviate-client sentence_transformers vertexai \
google-generativeai elasticsearch opensearch-py vecs pinecone pinecone-text
google-generativeai elasticsearch opensearch-py vecs pinecone pinecone-text faiss-cpu
# Format code with ruff
format:

View File

@@ -0,0 +1,72 @@
[FAISS](https://github.com/facebookresearch/faiss) is a library for efficient similarity search and clustering of dense vectors. It is designed to work with large-scale datasets and provides a high-performance search engine for vector data. FAISS is optimized for memory usage and search speed, making it an excellent choice for production environments.
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
config = {
"vector_store": {
"provider": "faiss",
"config": {
"collection_name": "test",
"path": "/tmp/faiss_memories",
"distance_strategy": "euclidean"
}
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})
```
### Installation
To use FAISS in your mem0 project, you need to install the appropriate FAISS package for your environment:
```bash
# For CPU version
pip install faiss-cpu
# For GPU version (requires CUDA)
pip install faiss-gpu
```
### Config
Here are the parameters available for configuring FAISS:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collection_name` | The name of the collection | `mem0` |
| `path` | Path to store FAISS index and metadata | `/tmp/faiss/<collection_name>` |
| `distance_strategy` | Distance metric strategy to use (options: 'euclidean', 'inner_product', 'cosine') | `euclidean` |
| `normalize_L2` | Whether to normalize L2 vectors (only applicable for euclidean distance) | `False` |
### Performance Considerations
FAISS offers several advantages for vector search:
1. **Efficiency**: FAISS is optimized for memory usage and speed, making it suitable for large-scale applications.
2. **Offline Support**: FAISS works entirely locally, with no need for external servers or API calls.
3. **Storage Options**: Vectors can be stored in-memory for maximum speed or persisted to disk.
4. **Multiple Index Types**: FAISS supports different index types optimized for various use cases (though mem0 currently uses the basic flat index).
### Distance Strategies
FAISS in mem0 supports three distance strategies:
- **euclidean**: L2 distance, suitable for most embedding models
- **inner_product**: Dot product similarity, useful for some specialized embeddings
- **cosine**: Cosine similarity, best for comparing semantic similarity regardless of vector magnitude
When using `cosine` or `inner_product` with normalized vectors, you may want to set `normalize_L2=True` for better results.

View File

@@ -27,6 +27,7 @@ See the list of supported vector databases below.
<Card title="Supabase" href="/components/vectordbs/dbs/supabase"></Card>
<Card title="Vertex AI Vector Search" href="/components/vectordbs/dbs/vertex_ai_vector_search"></Card>
<Card title="Weaviate" href="/components/vectordbs/dbs/weaviate"></Card>
<Card title="FAISS" href="/components/vectordbs/dbs/faiss"></Card>
</CardGroup>
## Usage

View File

@@ -0,0 +1,38 @@
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, model_validator
class FAISSConfig(BaseModel):
collection_name: str = Field("mem0", description="Default name for the collection")
path: Optional[str] = Field(None, description="Path to store FAISS index and metadata")
distance_strategy: str = Field(
"euclidean", description="Distance strategy to use. Options: 'euclidean', 'inner_product', 'cosine'"
)
normalize_L2: bool = Field(
False, description="Whether to normalize L2 vectors (only applicable for euclidean distance)"
)
@model_validator(mode="before")
@classmethod
def validate_distance_strategy(cls, values: Dict[str, Any]) -> Dict[str, Any]:
distance_strategy = values.get("distance_strategy")
if distance_strategy and distance_strategy not in ["euclidean", "inner_product", "cosine"]:
raise ValueError("Invalid distance_strategy. Must be one of: 'euclidean', 'inner_product', 'cosine'")
return values
@model_validator(mode="before")
@classmethod
def validate_extra_fields(cls, values: Dict[str, Any]) -> Dict[str, Any]:
allowed_fields = set(cls.model_fields.keys())
input_fields = set(values.keys())
extra_fields = input_fields - allowed_fields
if extra_fields:
raise ValueError(
f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}"
)
return values
model_config = {
"arbitrary_types_allowed": True,
}

View File

@@ -76,6 +76,7 @@ class VectorStoreFactory:
"opensearch": "mem0.vector_stores.opensearch.OpenSearchDB",
"supabase": "mem0.vector_stores.supabase.Supabase",
"weaviate": "mem0.vector_stores.weaviate.Weaviate",
"faiss": "mem0.vector_stores.faiss.FAISS",
}
@classmethod

View File

@@ -23,6 +23,7 @@ class VectorStoreConfig(BaseModel):
"opensearch": "OpenSearchConfig",
"supabase": "SupabaseConfig",
"weaviate": "WeaviateConfig",
"faiss": "FAISSConfig",
}
@model_validator(mode="after")

464
mem0/vector_stores/faiss.py Normal file
View File

@@ -0,0 +1,464 @@
import logging
import os
import pickle
import uuid
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
from pydantic import BaseModel
try:
import faiss
except ImportError:
raise ImportError(
"Could not import faiss python package. "
"Please install it with `pip install faiss-gpu` (for CUDA supported GPU) "
"or `pip install faiss-cpu` (depending on Python version)."
)
from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: Optional[str] # memory id
score: Optional[float] # distance
payload: Optional[Dict] # metadata
class FAISS(VectorStoreBase):
def __init__(
self,
collection_name: str,
path: Optional[str] = None,
distance_strategy: str = "euclidean",
normalize_L2: bool = False,
):
"""
Initialize the FAISS vector store.
Args:
collection_name (str): Name of the collection.
path (str, optional): Path for local FAISS database. Defaults to None.
distance_strategy (str, optional): Distance strategy to use. Options: 'euclidean', 'inner_product', 'cosine'.
Defaults to "euclidean".
normalize_L2 (bool, optional): Whether to normalize L2 vectors. Only applicable for euclidean distance.
Defaults to False.
"""
self.collection_name = collection_name
self.path = path or f"/tmp/faiss/{collection_name}"
self.distance_strategy = distance_strategy
self.normalize_L2 = normalize_L2
# Initialize storage structures
self.index = None
self.docstore = {}
self.index_to_id = {}
# Create directory if it doesn't exist
if self.path:
os.makedirs(os.path.dirname(self.path), exist_ok=True)
# Try to load existing index if available
index_path = f"{self.path}/{collection_name}.faiss"
docstore_path = f"{self.path}/{collection_name}.pkl"
if os.path.exists(index_path) and os.path.exists(docstore_path):
self._load(index_path, docstore_path)
else:
self.create_col(collection_name)
def _load(self, index_path: str, docstore_path: str):
"""
Load FAISS index and docstore from disk.
Args:
index_path (str): Path to FAISS index file.
docstore_path (str): Path to docstore pickle file.
"""
try:
self.index = faiss.read_index(index_path)
with open(docstore_path, "rb") as f:
self.docstore, self.index_to_id = pickle.load(f)
logger.info(f"Loaded FAISS index from {index_path} with {self.index.ntotal} vectors")
except Exception as e:
logger.warning(f"Failed to load FAISS index: {e}")
self.docstore = {}
self.index_to_id = {}
def _save(self):
"""Save FAISS index and docstore to disk."""
if not self.path or not self.index:
return
try:
os.makedirs(self.path, exist_ok=True)
index_path = f"{self.path}/{self.collection_name}.faiss"
docstore_path = f"{self.path}/{self.collection_name}.pkl"
faiss.write_index(self.index, index_path)
with open(docstore_path, "wb") as f:
pickle.dump((self.docstore, self.index_to_id), f)
logger.info(f"Saved FAISS index to {index_path} with {self.index.ntotal} vectors")
except Exception as e:
logger.warning(f"Failed to save FAISS index: {e}")
def _parse_output(self, scores, ids, limit=None) -> List[OutputData]:
"""
Parse the output data.
Args:
scores: Similarity scores from FAISS.
ids: Indices from FAISS.
limit: Maximum number of results to return.
Returns:
List[OutputData]: Parsed output data.
"""
if limit is None:
limit = len(ids)
results = []
for i in range(min(len(ids), limit)):
if ids[i] == -1: # FAISS returns -1 for empty results
continue
index_id = int(ids[i])
vector_id = self.index_to_id.get(index_id)
if vector_id is None:
continue
payload = self.docstore.get(vector_id)
if payload is None:
continue
payload_copy = payload.copy()
score = float(scores[i])
entry = OutputData(
id=vector_id,
score=score,
payload=payload_copy,
)
results.append(entry)
return results
def create_col(self, name: str, vector_size: int = 1536, distance: str = None):
"""
Create a new collection.
Args:
name (str): Name of the collection.
vector_size (int, optional): Dimensionality of vectors. Defaults to 1536.
distance (str, optional): Distance metric to use. Overrides the distance_strategy
passed during initialization. Defaults to None.
Returns:
self: The FAISS instance.
"""
distance_strategy = distance or self.distance_strategy
# Create index based on distance strategy
if distance_strategy.lower() == "inner_product" or distance_strategy.lower() == "cosine":
self.index = faiss.IndexFlatIP(vector_size)
else:
self.index = faiss.IndexFlatL2(vector_size)
self.collection_name = name
self._save()
return self
def insert(
self,
vectors: List[list],
payloads: Optional[List[Dict]] = None,
ids: Optional[List[str]] = None,
):
"""
Insert vectors into a collection.
Args:
vectors (List[list]): List of vectors to insert.
payloads (Optional[List[Dict]], optional): List of payloads corresponding to vectors. Defaults to None.
ids (Optional[List[str]], optional): List of IDs corresponding to vectors. Defaults to None.
"""
if self.index is None:
raise ValueError("Collection not initialized. Call create_col first.")
if ids is None:
ids = [str(uuid.uuid4()) for _ in range(len(vectors))]
if payloads is None:
payloads = [{} for _ in range(len(vectors))]
if len(vectors) != len(ids) or len(vectors) != len(payloads):
raise ValueError("Vectors, payloads, and IDs must have the same length")
vectors_np = np.array(vectors, dtype=np.float32)
if self.normalize_L2 and self.distance_strategy.lower() == "euclidean":
faiss.normalize_L2(vectors_np)
self.index.add(vectors_np)
starting_idx = len(self.index_to_id)
for i, (vector_id, payload) in enumerate(zip(ids, payloads)):
self.docstore[vector_id] = payload.copy()
self.index_to_id[starting_idx + i] = vector_id
self._save()
logger.info(f"Inserted {len(vectors)} vectors into collection {self.collection_name}")
def search(
self, query: str, vectors: List[list], limit: int = 5, filters: Optional[Dict] = None
) -> List[OutputData]:
"""
Search for similar vectors.
Args:
query (str): Query (not used, kept for API compatibility).
vectors (List[list]): List of vectors to search.
limit (int, optional): Number of results to return. Defaults to 5.
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
Returns:
List[OutputData]: Search results.
"""
if self.index is None:
raise ValueError("Collection not initialized. Call create_col first.")
query_vectors = np.array(vectors, dtype=np.float32)
if len(query_vectors.shape) == 1:
query_vectors = query_vectors.reshape(1, -1)
if self.normalize_L2 and self.distance_strategy.lower() == "euclidean":
faiss.normalize_L2(query_vectors)
fetch_k = limit * 2 if filters else limit
scores, indices = self.index.search(query_vectors, fetch_k)
results = self._parse_output(scores[0], indices[0], limit)
if filters:
filtered_results = []
for result in results:
if self._apply_filters(result.payload, filters):
filtered_results.append(result)
if len(filtered_results) >= limit:
break
results = filtered_results[:limit]
return results
def _apply_filters(self, payload: Dict, filters: Dict) -> bool:
"""
Apply filters to a payload.
Args:
payload (Dict): Payload to filter.
filters (Dict): Filters to apply.
Returns:
bool: True if payload passes filters, False otherwise.
"""
if not filters or not payload:
return True
for key, value in filters.items():
if key not in payload:
return False
if isinstance(value, list):
if payload[key] not in value:
return False
elif payload[key] != value:
return False
return True
def delete(self, vector_id: str):
"""
Delete a vector by ID.
Args:
vector_id (str): ID of the vector to delete.
"""
if self.index is None:
raise ValueError("Collection not initialized. Call create_col first.")
index_to_delete = None
for idx, vid in self.index_to_id.items():
if vid == vector_id:
index_to_delete = idx
break
if index_to_delete is not None:
self.docstore.pop(vector_id, None)
self.index_to_id.pop(index_to_delete, None)
self._save()
logger.info(f"Deleted vector {vector_id} from collection {self.collection_name}")
else:
logger.warning(f"Vector {vector_id} not found in collection {self.collection_name}")
def update(
self,
vector_id: str,
vector: Optional[List[float]] = None,
payload: Optional[Dict] = None,
):
"""
Update a vector and its payload.
Args:
vector_id (str): ID of the vector to update.
vector (Optional[List[float]], optional): Updated vector. Defaults to None.
payload (Optional[Dict], optional): Updated payload. Defaults to None.
"""
if self.index is None:
raise ValueError("Collection not initialized. Call create_col first.")
if vector_id not in self.docstore:
raise ValueError(f"Vector {vector_id} not found")
current_payload = self.docstore[vector_id].copy()
if payload is not None:
self.docstore[vector_id] = payload.copy()
current_payload = self.docstore[vector_id].copy()
if vector is not None:
self.delete(vector_id)
self.insert([vector], [current_payload], [vector_id])
else:
self._save()
logger.info(f"Updated vector {vector_id} in collection {self.collection_name}")
def get(self, vector_id: str) -> OutputData:
"""
Retrieve a vector by ID.
Args:
vector_id (str): ID of the vector to retrieve.
Returns:
OutputData: Retrieved vector.
"""
if self.index is None:
raise ValueError("Collection not initialized. Call create_col first.")
if vector_id not in self.docstore:
return None
payload = self.docstore[vector_id].copy()
return OutputData(
id=vector_id,
score=None,
payload=payload,
)
def list_cols(self) -> List[str]:
"""
List all collections.
Returns:
List[str]: List of collection names.
"""
if not self.path:
return [self.collection_name] if self.index else []
try:
collections = []
path = Path(self.path).parent
for file in path.glob("*.faiss"):
collections.append(file.stem)
return collections
except Exception as e:
logger.warning(f"Failed to list collections: {e}")
return [self.collection_name] if self.index else []
def delete_col(self):
"""
Delete a collection.
"""
if self.path:
try:
index_path = f"{self.path}/{self.collection_name}.faiss"
docstore_path = f"{self.path}/{self.collection_name}.pkl"
if os.path.exists(index_path):
os.remove(index_path)
if os.path.exists(docstore_path):
os.remove(docstore_path)
logger.info(f"Deleted collection {self.collection_name}")
except Exception as e:
logger.warning(f"Failed to delete collection: {e}")
self.index = None
self.docstore = {}
self.index_to_id = {}
def col_info(self) -> Dict:
"""
Get information about a collection.
Returns:
Dict: Collection information.
"""
if self.index is None:
return {"name": self.collection_name, "count": 0}
return {
"name": self.collection_name,
"count": self.index.ntotal,
"dimension": self.index.d,
"distance": self.distance_strategy,
}
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[OutputData]:
"""
List all vectors in a collection.
Args:
filters (Optional[Dict], optional): Filters to apply to the list. Defaults to None.
limit (int, optional): Number of vectors to return. Defaults to 100.
Returns:
List[OutputData]: List of vectors.
"""
if self.index is None:
return []
results = []
count = 0
for vector_id, payload in self.docstore.items():
if filters and not self._apply_filters(payload, filters):
continue
payload_copy = payload.copy()
results.append(
OutputData(
id=vector_id,
score=None,
payload=payload_copy,
)
)
count += 1
if count >= limit:
break
return [results]

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "mem0ai"
version = "0.1.77"
version = "0.1.78"
description = "Long-term memory for AI Agents"
authors = ["Mem0 <founders@mem0.ai>"]
exclude = [

View File

@@ -0,0 +1,314 @@
import os
import tempfile
from unittest.mock import Mock, patch
import faiss
import numpy as np
import pytest
from mem0.vector_stores.faiss import FAISS, OutputData
@pytest.fixture
def mock_faiss_index():
index = Mock(spec=faiss.IndexFlatL2)
index.d = 128 # Dimension of the vectors
index.ntotal = 0 # Number of vectors in the index
return index
@pytest.fixture
def faiss_instance(mock_faiss_index):
with tempfile.TemporaryDirectory() as temp_dir:
# Mock the faiss index creation
with patch('faiss.IndexFlatL2', return_value=mock_faiss_index):
# Mock the faiss.write_index function
with patch('faiss.write_index'):
# Create a FAISS instance with a temporary directory
faiss_store = FAISS(
collection_name="test_collection",
path=os.path.join(temp_dir, "test_faiss"),
distance_strategy="euclidean",
)
# Set up the mock index
faiss_store.index = mock_faiss_index
yield faiss_store
def test_create_col(faiss_instance, mock_faiss_index):
# Test creating a collection with euclidean distance
with patch('faiss.IndexFlatL2', return_value=mock_faiss_index) as mock_index_flat_l2:
with patch('faiss.write_index'):
faiss_instance.create_col(name="new_collection", vector_size=256)
mock_index_flat_l2.assert_called_once_with(256)
# Test creating a collection with inner product distance
with patch('faiss.IndexFlatIP', return_value=mock_faiss_index) as mock_index_flat_ip:
with patch('faiss.write_index'):
faiss_instance.create_col(name="new_collection", vector_size=256, distance="inner_product")
mock_index_flat_ip.assert_called_once_with(256)
def test_insert(faiss_instance, mock_faiss_index):
# Prepare test data
vectors = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
payloads = [{"name": "vector1"}, {"name": "vector2"}]
ids = ["id1", "id2"]
# Mock the numpy array conversion
with patch('numpy.array', return_value=np.array(vectors, dtype=np.float32)) as mock_np_array:
# Mock index.add
mock_faiss_index.add.return_value = None
# Call insert
faiss_instance.insert(vectors=vectors, payloads=payloads, ids=ids)
# Verify numpy.array was called
mock_np_array.assert_called_once_with(vectors, dtype=np.float32)
# Verify index.add was called
mock_faiss_index.add.assert_called_once()
# Verify docstore and index_to_id were updated
assert faiss_instance.docstore["id1"] == {"name": "vector1"}
assert faiss_instance.docstore["id2"] == {"name": "vector2"}
assert faiss_instance.index_to_id[0] == "id1"
assert faiss_instance.index_to_id[1] == "id2"
def test_search(faiss_instance, mock_faiss_index):
# Prepare test data
query_vector = [0.1, 0.2, 0.3]
# Setup the docstore and index_to_id mapping
faiss_instance.docstore = {
"id1": {"name": "vector1"},
"id2": {"name": "vector2"}
}
faiss_instance.index_to_id = {0: "id1", 1: "id2"}
# First, create the mock for the search return values
search_scores = np.array([[0.9, 0.8]])
search_indices = np.array([[0, 1]])
mock_faiss_index.search.return_value = (search_scores, search_indices)
# Then patch numpy.array only for the query vector conversion
with patch('numpy.array') as mock_np_array:
mock_np_array.return_value = np.array(query_vector, dtype=np.float32)
# Then patch _parse_output to return the expected results
expected_results = [
OutputData(id="id1", score=0.9, payload={"name": "vector1"}),
OutputData(id="id2", score=0.8, payload={"name": "vector2"})
]
with patch.object(faiss_instance, '_parse_output', return_value=expected_results):
# Call search
results = faiss_instance.search(query="test query", vectors=query_vector, limit=2)
# Verify numpy.array was called (but we don't check exact call arguments since it's complex)
assert mock_np_array.called
# Verify index.search was called
mock_faiss_index.search.assert_called_once()
# Verify results
assert len(results) == 2
assert results[0].id == "id1"
assert results[0].score == 0.9
assert results[0].payload == {"name": "vector1"}
assert results[1].id == "id2"
assert results[1].score == 0.8
assert results[1].payload == {"name": "vector2"}
def test_search_with_filters(faiss_instance, mock_faiss_index):
# Prepare test data
query_vector = [0.1, 0.2, 0.3]
# Setup the docstore and index_to_id mapping
faiss_instance.docstore = {
"id1": {"name": "vector1", "category": "A"},
"id2": {"name": "vector2", "category": "B"}
}
faiss_instance.index_to_id = {0: "id1", 1: "id2"}
# First set up the search return values
search_scores = np.array([[0.9, 0.8]])
search_indices = np.array([[0, 1]])
mock_faiss_index.search.return_value = (search_scores, search_indices)
# Patch numpy.array for query vector conversion
with patch('numpy.array') as mock_np_array:
mock_np_array.return_value = np.array(query_vector, dtype=np.float32)
# Directly mock the _parse_output method to return our expected values
# We're simulating that _parse_output filters to just the first result
all_results = [
OutputData(id="id1", score=0.9, payload={"name": "vector1", "category": "A"}),
OutputData(id="id2", score=0.8, payload={"name": "vector2", "category": "B"})
]
filtered_results = [all_results[0]] # Just the "category": "A" result
# Create a side_effect function that returns all results first (for _parse_output)
# then returns filtered results (for the filters)
parse_output_mock = Mock(side_effect=[all_results, filtered_results])
# Replace the _apply_filters method to handle our test case
with patch.object(faiss_instance, '_parse_output', return_value=all_results):
with patch.object(faiss_instance, '_apply_filters', side_effect=lambda p, f: p.get("category") == "A"):
# Call search with filters
results = faiss_instance.search(
query="test query",
vectors=query_vector,
limit=2,
filters={"category": "A"}
)
# Verify numpy.array was called
assert mock_np_array.called
# Verify index.search was called
mock_faiss_index.search.assert_called_once()
# Verify filtered results - since we've mocked everything,
# we should get just the result we want
assert len(results) == 1
assert results[0].id == "id1"
assert results[0].score == 0.9
assert results[0].payload == {"name": "vector1", "category": "A"}
def test_delete(faiss_instance):
# Setup the docstore and index_to_id mapping
faiss_instance.docstore = {
"id1": {"name": "vector1"},
"id2": {"name": "vector2"}
}
faiss_instance.index_to_id = {0: "id1", 1: "id2"}
# Call delete
faiss_instance.delete(vector_id="id1")
# Verify the vector was removed from docstore and index_to_id
assert "id1" not in faiss_instance.docstore
assert 0 not in faiss_instance.index_to_id
assert "id2" in faiss_instance.docstore
assert 1 in faiss_instance.index_to_id
def test_update(faiss_instance, mock_faiss_index):
# Setup the docstore and index_to_id mapping
faiss_instance.docstore = {
"id1": {"name": "vector1"},
"id2": {"name": "vector2"}
}
faiss_instance.index_to_id = {0: "id1", 1: "id2"}
# Test updating payload only
faiss_instance.update(vector_id="id1", payload={"name": "updated_vector1"})
assert faiss_instance.docstore["id1"] == {"name": "updated_vector1"}
# Test updating vector
# This requires mocking the delete and insert methods
with patch.object(faiss_instance, 'delete') as mock_delete:
with patch.object(faiss_instance, 'insert') as mock_insert:
new_vector = [0.7, 0.8, 0.9]
faiss_instance.update(vector_id="id2", vector=new_vector)
# Verify delete and insert were called
# Match the actual call signature (positional arg instead of keyword)
mock_delete.assert_called_once_with("id2")
mock_insert.assert_called_once()
def test_get(faiss_instance):
# Setup the docstore
faiss_instance.docstore = {
"id1": {"name": "vector1"},
"id2": {"name": "vector2"}
}
# Test getting an existing vector
result = faiss_instance.get(vector_id="id1")
assert result.id == "id1"
assert result.payload == {"name": "vector1"}
assert result.score is None
# Test getting a non-existent vector
result = faiss_instance.get(vector_id="id3")
assert result is None
def test_list(faiss_instance):
# Setup the docstore
faiss_instance.docstore = {
"id1": {"name": "vector1", "category": "A"},
"id2": {"name": "vector2", "category": "B"},
"id3": {"name": "vector3", "category": "A"}
}
# Test listing all vectors
results = faiss_instance.list()
# Fix the expected result - the list method returns a list of lists
assert len(results[0]) == 3
# Test listing with a limit
results = faiss_instance.list(limit=2)
assert len(results[0]) == 2
# Test listing with filters
results = faiss_instance.list(filters={"category": "A"})
assert len(results[0]) == 2
for result in results[0]:
assert result.payload["category"] == "A"
def test_col_info(faiss_instance, mock_faiss_index):
# Mock index attributes
mock_faiss_index.ntotal = 5
mock_faiss_index.d = 128
# Get collection info
info = faiss_instance.col_info()
# Verify the returned info
assert info["name"] == "test_collection"
assert info["count"] == 5
assert info["dimension"] == 128
assert info["distance"] == "euclidean"
def test_delete_col(faiss_instance):
# Mock the os.remove function
with patch('os.remove') as mock_remove:
with patch('os.path.exists', return_value=True):
# Call delete_col
faiss_instance.delete_col()
# Verify os.remove was called twice (for index and docstore files)
assert mock_remove.call_count == 2
# Verify the internal state was reset
assert faiss_instance.index is None
assert faiss_instance.docstore == {}
assert faiss_instance.index_to_id == {}
def test_normalize_L2(faiss_instance, mock_faiss_index):
# Setup a FAISS instance with normalize_L2=True
faiss_instance.normalize_L2 = True
# Prepare test data
vectors = [[0.1, 0.2, 0.3]]
# Mock numpy array conversion
with patch('numpy.array', return_value=np.array(vectors, dtype=np.float32)) as mock_np_array:
# Mock faiss.normalize_L2
with patch('faiss.normalize_L2') as mock_normalize:
# Call insert
faiss_instance.insert(vectors=vectors, ids=["id1"])
# Verify faiss.normalize_L2 was called
mock_normalize.assert_called_once()