Add Faiss Support (#2461)
This commit is contained in:
@@ -23,6 +23,7 @@ class VectorStoreConfig(BaseModel):
|
||||
"opensearch": "OpenSearchConfig",
|
||||
"supabase": "SupabaseConfig",
|
||||
"weaviate": "WeaviateConfig",
|
||||
"faiss": "FAISSConfig",
|
||||
}
|
||||
|
||||
@model_validator(mode="after")
|
||||
|
||||
464
mem0/vector_stores/faiss.py
Normal file
464
mem0/vector_stores/faiss.py
Normal file
@@ -0,0 +1,464 @@
|
||||
import logging
|
||||
import os
|
||||
import pickle
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
from pydantic import BaseModel
|
||||
|
||||
try:
|
||||
import faiss
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import faiss python package. "
|
||||
"Please install it with `pip install faiss-gpu` (for CUDA supported GPU) "
|
||||
"or `pip install faiss-cpu` (depending on Python version)."
|
||||
)
|
||||
|
||||
from mem0.vector_stores.base import VectorStoreBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OutputData(BaseModel):
|
||||
id: Optional[str] # memory id
|
||||
score: Optional[float] # distance
|
||||
payload: Optional[Dict] # metadata
|
||||
|
||||
|
||||
class FAISS(VectorStoreBase):
|
||||
def __init__(
|
||||
self,
|
||||
collection_name: str,
|
||||
path: Optional[str] = None,
|
||||
distance_strategy: str = "euclidean",
|
||||
normalize_L2: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize the FAISS vector store.
|
||||
|
||||
Args:
|
||||
collection_name (str): Name of the collection.
|
||||
path (str, optional): Path for local FAISS database. Defaults to None.
|
||||
distance_strategy (str, optional): Distance strategy to use. Options: 'euclidean', 'inner_product', 'cosine'.
|
||||
Defaults to "euclidean".
|
||||
normalize_L2 (bool, optional): Whether to normalize L2 vectors. Only applicable for euclidean distance.
|
||||
Defaults to False.
|
||||
"""
|
||||
self.collection_name = collection_name
|
||||
self.path = path or f"/tmp/faiss/{collection_name}"
|
||||
self.distance_strategy = distance_strategy
|
||||
self.normalize_L2 = normalize_L2
|
||||
|
||||
# Initialize storage structures
|
||||
self.index = None
|
||||
self.docstore = {}
|
||||
self.index_to_id = {}
|
||||
|
||||
# Create directory if it doesn't exist
|
||||
if self.path:
|
||||
os.makedirs(os.path.dirname(self.path), exist_ok=True)
|
||||
|
||||
# Try to load existing index if available
|
||||
index_path = f"{self.path}/{collection_name}.faiss"
|
||||
docstore_path = f"{self.path}/{collection_name}.pkl"
|
||||
if os.path.exists(index_path) and os.path.exists(docstore_path):
|
||||
self._load(index_path, docstore_path)
|
||||
else:
|
||||
self.create_col(collection_name)
|
||||
|
||||
def _load(self, index_path: str, docstore_path: str):
|
||||
"""
|
||||
Load FAISS index and docstore from disk.
|
||||
|
||||
Args:
|
||||
index_path (str): Path to FAISS index file.
|
||||
docstore_path (str): Path to docstore pickle file.
|
||||
"""
|
||||
try:
|
||||
self.index = faiss.read_index(index_path)
|
||||
with open(docstore_path, "rb") as f:
|
||||
self.docstore, self.index_to_id = pickle.load(f)
|
||||
logger.info(f"Loaded FAISS index from {index_path} with {self.index.ntotal} vectors")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load FAISS index: {e}")
|
||||
|
||||
self.docstore = {}
|
||||
self.index_to_id = {}
|
||||
|
||||
def _save(self):
|
||||
"""Save FAISS index and docstore to disk."""
|
||||
if not self.path or not self.index:
|
||||
return
|
||||
|
||||
try:
|
||||
os.makedirs(self.path, exist_ok=True)
|
||||
index_path = f"{self.path}/{self.collection_name}.faiss"
|
||||
docstore_path = f"{self.path}/{self.collection_name}.pkl"
|
||||
|
||||
faiss.write_index(self.index, index_path)
|
||||
with open(docstore_path, "wb") as f:
|
||||
pickle.dump((self.docstore, self.index_to_id), f)
|
||||
logger.info(f"Saved FAISS index to {index_path} with {self.index.ntotal} vectors")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to save FAISS index: {e}")
|
||||
|
||||
def _parse_output(self, scores, ids, limit=None) -> List[OutputData]:
|
||||
"""
|
||||
Parse the output data.
|
||||
|
||||
Args:
|
||||
scores: Similarity scores from FAISS.
|
||||
ids: Indices from FAISS.
|
||||
limit: Maximum number of results to return.
|
||||
|
||||
Returns:
|
||||
List[OutputData]: Parsed output data.
|
||||
"""
|
||||
if limit is None:
|
||||
limit = len(ids)
|
||||
|
||||
results = []
|
||||
for i in range(min(len(ids), limit)):
|
||||
if ids[i] == -1: # FAISS returns -1 for empty results
|
||||
continue
|
||||
|
||||
index_id = int(ids[i])
|
||||
vector_id = self.index_to_id.get(index_id)
|
||||
if vector_id is None:
|
||||
continue
|
||||
|
||||
payload = self.docstore.get(vector_id)
|
||||
if payload is None:
|
||||
continue
|
||||
|
||||
payload_copy = payload.copy()
|
||||
|
||||
score = float(scores[i])
|
||||
entry = OutputData(
|
||||
id=vector_id,
|
||||
score=score,
|
||||
payload=payload_copy,
|
||||
)
|
||||
results.append(entry)
|
||||
|
||||
return results
|
||||
|
||||
def create_col(self, name: str, vector_size: int = 1536, distance: str = None):
|
||||
"""
|
||||
Create a new collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_size (int, optional): Dimensionality of vectors. Defaults to 1536.
|
||||
distance (str, optional): Distance metric to use. Overrides the distance_strategy
|
||||
passed during initialization. Defaults to None.
|
||||
|
||||
Returns:
|
||||
self: The FAISS instance.
|
||||
"""
|
||||
distance_strategy = distance or self.distance_strategy
|
||||
|
||||
# Create index based on distance strategy
|
||||
if distance_strategy.lower() == "inner_product" or distance_strategy.lower() == "cosine":
|
||||
self.index = faiss.IndexFlatIP(vector_size)
|
||||
else:
|
||||
self.index = faiss.IndexFlatL2(vector_size)
|
||||
|
||||
self.collection_name = name
|
||||
|
||||
self._save()
|
||||
|
||||
return self
|
||||
|
||||
def insert(
|
||||
self,
|
||||
vectors: List[list],
|
||||
payloads: Optional[List[Dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
):
|
||||
"""
|
||||
Insert vectors into a collection.
|
||||
|
||||
Args:
|
||||
vectors (List[list]): List of vectors to insert.
|
||||
payloads (Optional[List[Dict]], optional): List of payloads corresponding to vectors. Defaults to None.
|
||||
ids (Optional[List[str]], optional): List of IDs corresponding to vectors. Defaults to None.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in range(len(vectors))]
|
||||
|
||||
if payloads is None:
|
||||
payloads = [{} for _ in range(len(vectors))]
|
||||
|
||||
if len(vectors) != len(ids) or len(vectors) != len(payloads):
|
||||
raise ValueError("Vectors, payloads, and IDs must have the same length")
|
||||
|
||||
vectors_np = np.array(vectors, dtype=np.float32)
|
||||
|
||||
if self.normalize_L2 and self.distance_strategy.lower() == "euclidean":
|
||||
faiss.normalize_L2(vectors_np)
|
||||
|
||||
self.index.add(vectors_np)
|
||||
|
||||
starting_idx = len(self.index_to_id)
|
||||
for i, (vector_id, payload) in enumerate(zip(ids, payloads)):
|
||||
self.docstore[vector_id] = payload.copy()
|
||||
self.index_to_id[starting_idx + i] = vector_id
|
||||
|
||||
self._save()
|
||||
|
||||
logger.info(f"Inserted {len(vectors)} vectors into collection {self.collection_name}")
|
||||
|
||||
def search(
|
||||
self, query: str, vectors: List[list], limit: int = 5, filters: Optional[Dict] = None
|
||||
) -> List[OutputData]:
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
query (str): Query (not used, kept for API compatibility).
|
||||
vectors (List[list]): List of vectors to search.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[OutputData]: Search results.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
query_vectors = np.array(vectors, dtype=np.float32)
|
||||
|
||||
if len(query_vectors.shape) == 1:
|
||||
query_vectors = query_vectors.reshape(1, -1)
|
||||
|
||||
if self.normalize_L2 and self.distance_strategy.lower() == "euclidean":
|
||||
faiss.normalize_L2(query_vectors)
|
||||
|
||||
fetch_k = limit * 2 if filters else limit
|
||||
scores, indices = self.index.search(query_vectors, fetch_k)
|
||||
|
||||
results = self._parse_output(scores[0], indices[0], limit)
|
||||
|
||||
if filters:
|
||||
filtered_results = []
|
||||
for result in results:
|
||||
if self._apply_filters(result.payload, filters):
|
||||
filtered_results.append(result)
|
||||
if len(filtered_results) >= limit:
|
||||
break
|
||||
results = filtered_results[:limit]
|
||||
|
||||
return results
|
||||
|
||||
def _apply_filters(self, payload: Dict, filters: Dict) -> bool:
|
||||
"""
|
||||
Apply filters to a payload.
|
||||
|
||||
Args:
|
||||
payload (Dict): Payload to filter.
|
||||
filters (Dict): Filters to apply.
|
||||
|
||||
Returns:
|
||||
bool: True if payload passes filters, False otherwise.
|
||||
"""
|
||||
if not filters or not payload:
|
||||
return True
|
||||
|
||||
for key, value in filters.items():
|
||||
if key not in payload:
|
||||
return False
|
||||
|
||||
if isinstance(value, list):
|
||||
if payload[key] not in value:
|
||||
return False
|
||||
elif payload[key] != value:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def delete(self, vector_id: str):
|
||||
"""
|
||||
Delete a vector by ID.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to delete.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
index_to_delete = None
|
||||
for idx, vid in self.index_to_id.items():
|
||||
if vid == vector_id:
|
||||
index_to_delete = idx
|
||||
break
|
||||
|
||||
if index_to_delete is not None:
|
||||
self.docstore.pop(vector_id, None)
|
||||
self.index_to_id.pop(index_to_delete, None)
|
||||
|
||||
self._save()
|
||||
|
||||
logger.info(f"Deleted vector {vector_id} from collection {self.collection_name}")
|
||||
else:
|
||||
logger.warning(f"Vector {vector_id} not found in collection {self.collection_name}")
|
||||
|
||||
def update(
|
||||
self,
|
||||
vector_id: str,
|
||||
vector: Optional[List[float]] = None,
|
||||
payload: Optional[Dict] = None,
|
||||
):
|
||||
"""
|
||||
Update a vector and its payload.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to update.
|
||||
vector (Optional[List[float]], optional): Updated vector. Defaults to None.
|
||||
payload (Optional[Dict], optional): Updated payload. Defaults to None.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
if vector_id not in self.docstore:
|
||||
raise ValueError(f"Vector {vector_id} not found")
|
||||
|
||||
current_payload = self.docstore[vector_id].copy()
|
||||
|
||||
if payload is not None:
|
||||
self.docstore[vector_id] = payload.copy()
|
||||
current_payload = self.docstore[vector_id].copy()
|
||||
|
||||
if vector is not None:
|
||||
self.delete(vector_id)
|
||||
self.insert([vector], [current_payload], [vector_id])
|
||||
else:
|
||||
self._save()
|
||||
|
||||
logger.info(f"Updated vector {vector_id} in collection {self.collection_name}")
|
||||
|
||||
def get(self, vector_id: str) -> OutputData:
|
||||
"""
|
||||
Retrieve a vector by ID.
|
||||
|
||||
Args:
|
||||
vector_id (str): ID of the vector to retrieve.
|
||||
|
||||
Returns:
|
||||
OutputData: Retrieved vector.
|
||||
"""
|
||||
if self.index is None:
|
||||
raise ValueError("Collection not initialized. Call create_col first.")
|
||||
|
||||
if vector_id not in self.docstore:
|
||||
return None
|
||||
|
||||
payload = self.docstore[vector_id].copy()
|
||||
|
||||
return OutputData(
|
||||
id=vector_id,
|
||||
score=None,
|
||||
payload=payload,
|
||||
)
|
||||
|
||||
def list_cols(self) -> List[str]:
|
||||
"""
|
||||
List all collections.
|
||||
|
||||
Returns:
|
||||
List[str]: List of collection names.
|
||||
"""
|
||||
if not self.path:
|
||||
return [self.collection_name] if self.index else []
|
||||
|
||||
try:
|
||||
collections = []
|
||||
path = Path(self.path).parent
|
||||
for file in path.glob("*.faiss"):
|
||||
collections.append(file.stem)
|
||||
return collections
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to list collections: {e}")
|
||||
return [self.collection_name] if self.index else []
|
||||
|
||||
def delete_col(self):
|
||||
"""
|
||||
Delete a collection.
|
||||
"""
|
||||
if self.path:
|
||||
try:
|
||||
index_path = f"{self.path}/{self.collection_name}.faiss"
|
||||
docstore_path = f"{self.path}/{self.collection_name}.pkl"
|
||||
|
||||
if os.path.exists(index_path):
|
||||
os.remove(index_path)
|
||||
if os.path.exists(docstore_path):
|
||||
os.remove(docstore_path)
|
||||
|
||||
logger.info(f"Deleted collection {self.collection_name}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete collection: {e}")
|
||||
|
||||
self.index = None
|
||||
self.docstore = {}
|
||||
self.index_to_id = {}
|
||||
|
||||
def col_info(self) -> Dict:
|
||||
"""
|
||||
Get information about a collection.
|
||||
|
||||
Returns:
|
||||
Dict: Collection information.
|
||||
"""
|
||||
if self.index is None:
|
||||
return {"name": self.collection_name, "count": 0}
|
||||
|
||||
return {
|
||||
"name": self.collection_name,
|
||||
"count": self.index.ntotal,
|
||||
"dimension": self.index.d,
|
||||
"distance": self.distance_strategy,
|
||||
}
|
||||
|
||||
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[OutputData]:
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Args:
|
||||
filters (Optional[Dict], optional): Filters to apply to the list. Defaults to None.
|
||||
limit (int, optional): Number of vectors to return. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
List[OutputData]: List of vectors.
|
||||
"""
|
||||
if self.index is None:
|
||||
return []
|
||||
|
||||
results = []
|
||||
count = 0
|
||||
|
||||
for vector_id, payload in self.docstore.items():
|
||||
if filters and not self._apply_filters(payload, filters):
|
||||
continue
|
||||
|
||||
payload_copy = payload.copy()
|
||||
|
||||
results.append(
|
||||
OutputData(
|
||||
id=vector_id,
|
||||
score=None,
|
||||
payload=payload_copy,
|
||||
)
|
||||
)
|
||||
|
||||
count += 1
|
||||
if count >= limit:
|
||||
break
|
||||
|
||||
return [results]
|
||||
Reference in New Issue
Block a user