Azure openai fixes (#2428)

This commit is contained in:
Parshva Daftari
2025-03-25 00:34:21 +05:30
committed by GitHub
parent 2b49c9eedd
commit 953a5a4a2d
4 changed files with 17 additions and 6 deletions

View File

@@ -4,6 +4,9 @@ title: Azure OpenAI
To use Azure OpenAI models, you have to set the `LLM_AZURE_OPENAI_API_KEY`, `LLM_AZURE_ENDPOINT`, `LLM_AZURE_DEPLOYMENT` and `LLM_AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/). To use Azure OpenAI models, you have to set the `LLM_AZURE_OPENAI_API_KEY`, `LLM_AZURE_ENDPOINT`, `LLM_AZURE_DEPLOYMENT` and `LLM_AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
> **Note**: The following are currently unsupported with reasoning models `Parallel tool calling`,`temperature`, `top_p`, `presence_penalty`, `frequency_penalty`, `logprobs`, `top_logprobs`, `logit_bias`, `max_tokens`
## Usage ## Usage
```python ```python

View File

@@ -1,6 +1,6 @@
[Pinecone](https://www.pinecone.io/) is a fully managed vector database designed for machine learning applications, offering high performance vector search with low latency at scale. It's particularly well-suited for semantic search, recommendation systems, and other AI-powered applications. [Pinecone](https://www.pinecone.io/) is a fully managed vector database designed for machine learning applications, offering high performance vector search with low latency at scale. It's particularly well-suited for semantic search, recommendation systems, and other AI-powered applications.
> **Note**: Before configuring Pinecone, you need to select an embedding model (e.g., OpenAI, Cohere, or custom models) and ensure the `embedding_model_dims` in your config matches your chosen model's dimensions. For example, OpenAI's text-embedding-ada-002 uses 1536 dimensions. > **Note**: Before configuring Pinecone, you need to select an embedding model (e.g., OpenAI, Cohere, or custom models) and ensure the `embedding_model_dims` in your config matches your chosen model's dimensions. For example, OpenAI's text-embedding-3-small uses 1536 dimensions.
### Usage ### Usage

View File

@@ -80,13 +80,21 @@ class AzureOpenAILLM(LLMBase):
Returns: Returns:
str: The generated response. str: The generated response.
""" """
params = {
common_params = {
"model": self.config.model, "model": self.config.model,
"messages": messages, "messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
} }
if self.config.model in {"o3-mini", "o1-preview", "o1"}:
params = common_params
else:
params = {
**common_params,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if response_format: if response_format:
params["response_format"] = response_format params["response_format"] = response_format
if tools: # TODO: Remove tools if no issues found with new memory addition logic if tools: # TODO: Remove tools if no issues found with new memory addition logic

View File

@@ -67,7 +67,7 @@ def test_insert_vectors(pinecone_db):
def test_search_vectors(pinecone_db): def test_search_vectors(pinecone_db):
pinecone_db.index.query.return_value.matches = [{"id": "id1", "score": 0.9, "metadata": {"name": "vector1"}}] pinecone_db.index.query.return_value.matches = [{"id": "id1", "score": 0.9, "metadata": {"name": "vector1"}}]
results = pinecone_db.search([0.1] * 128, limit=1) results = pinecone_db.search("test query",[0.1] * 128, limit=1)
assert len(results) == 1 assert len(results) == 1
assert results[0].id == "id1" assert results[0].id == "id1"
assert results[0].score == 0.9 assert results[0].score == 0.9