Azure openai fixes (#2428)
This commit is contained in:
@@ -4,6 +4,9 @@ title: Azure OpenAI
|
|||||||
|
|
||||||
To use Azure OpenAI models, you have to set the `LLM_AZURE_OPENAI_API_KEY`, `LLM_AZURE_ENDPOINT`, `LLM_AZURE_DEPLOYMENT` and `LLM_AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
|
To use Azure OpenAI models, you have to set the `LLM_AZURE_OPENAI_API_KEY`, `LLM_AZURE_ENDPOINT`, `LLM_AZURE_DEPLOYMENT` and `LLM_AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
|
||||||
|
|
||||||
|
> **Note**: The following are currently unsupported with reasoning models `Parallel tool calling`,`temperature`, `top_p`, `presence_penalty`, `frequency_penalty`, `logprobs`, `top_logprobs`, `logit_bias`, `max_tokens`
|
||||||
|
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[Pinecone](https://www.pinecone.io/) is a fully managed vector database designed for machine learning applications, offering high performance vector search with low latency at scale. It's particularly well-suited for semantic search, recommendation systems, and other AI-powered applications.
|
[Pinecone](https://www.pinecone.io/) is a fully managed vector database designed for machine learning applications, offering high performance vector search with low latency at scale. It's particularly well-suited for semantic search, recommendation systems, and other AI-powered applications.
|
||||||
|
|
||||||
> **Note**: Before configuring Pinecone, you need to select an embedding model (e.g., OpenAI, Cohere, or custom models) and ensure the `embedding_model_dims` in your config matches your chosen model's dimensions. For example, OpenAI's text-embedding-ada-002 uses 1536 dimensions.
|
> **Note**: Before configuring Pinecone, you need to select an embedding model (e.g., OpenAI, Cohere, or custom models) and ensure the `embedding_model_dims` in your config matches your chosen model's dimensions. For example, OpenAI's text-embedding-3-small uses 1536 dimensions.
|
||||||
|
|
||||||
### Usage
|
### Usage
|
||||||
|
|
||||||
|
|||||||
@@ -80,13 +80,21 @@ class AzureOpenAILLM(LLMBase):
|
|||||||
Returns:
|
Returns:
|
||||||
str: The generated response.
|
str: The generated response.
|
||||||
"""
|
"""
|
||||||
params = {
|
|
||||||
|
common_params = {
|
||||||
"model": self.config.model,
|
"model": self.config.model,
|
||||||
"messages": messages,
|
"messages": messages,
|
||||||
"temperature": self.config.temperature,
|
|
||||||
"max_tokens": self.config.max_tokens,
|
|
||||||
"top_p": self.config.top_p,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if self.config.model in {"o3-mini", "o1-preview", "o1"}:
|
||||||
|
params = common_params
|
||||||
|
else:
|
||||||
|
params = {
|
||||||
|
**common_params,
|
||||||
|
"temperature": self.config.temperature,
|
||||||
|
"max_tokens": self.config.max_tokens,
|
||||||
|
"top_p": self.config.top_p,
|
||||||
|
}
|
||||||
if response_format:
|
if response_format:
|
||||||
params["response_format"] = response_format
|
params["response_format"] = response_format
|
||||||
if tools: # TODO: Remove tools if no issues found with new memory addition logic
|
if tools: # TODO: Remove tools if no issues found with new memory addition logic
|
||||||
|
|||||||
@@ -67,7 +67,7 @@ def test_insert_vectors(pinecone_db):
|
|||||||
|
|
||||||
def test_search_vectors(pinecone_db):
|
def test_search_vectors(pinecone_db):
|
||||||
pinecone_db.index.query.return_value.matches = [{"id": "id1", "score": 0.9, "metadata": {"name": "vector1"}}]
|
pinecone_db.index.query.return_value.matches = [{"id": "id1", "score": 0.9, "metadata": {"name": "vector1"}}]
|
||||||
results = pinecone_db.search([0.1] * 128, limit=1)
|
results = pinecone_db.search("test query",[0.1] * 128, limit=1)
|
||||||
assert len(results) == 1
|
assert len(results) == 1
|
||||||
assert results[0].id == "id1"
|
assert results[0].id == "id1"
|
||||||
assert results[0].score == 0.9
|
assert results[0].score == 0.9
|
||||||
|
|||||||
Reference in New Issue
Block a user