Add Upstash Vector support (#2493)

This commit is contained in:
ytkimirti
2025-04-09 07:36:07 +03:00
committed by GitHub
parent 9100e95175
commit 91abc03880
11 changed files with 840 additions and 12 deletions

View File

@@ -13,7 +13,8 @@ install:
install_all:
poetry install
poetry run pip install groq together boto3 litellm ollama chromadb weaviate weaviate-client sentence_transformers vertexai \
google-generativeai elasticsearch opensearch-py vecs pinecone pinecone-text faiss-cpu langchain-community
google-generativeai elasticsearch opensearch-py vecs pinecone pinecone-text faiss-cpu langchain-community \
upstash-vector
# Format code with ruff
format:

View File

@@ -8,7 +8,7 @@ iconType: "solid"
The `config` is defined as an object with two main keys:
- `vector_store`: Specifies the vector database provider and its configuration
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus","azure_ai_search", "vertex_ai_vector_search")
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus", "upstash_vector", "azure_ai_search", "vertex_ai_vector_search")
- `config`: A nested dictionary containing provider-specific settings

View File

@@ -0,0 +1,70 @@
[Upstash Vector](https://upstash.com/docs/vector) is a serverless vector database with built-in embedding models.
### Usage with Upstash embeddings
You can enable the built-in embedding models by setting `enable_embeddings` to `True`. This allows you to use Upstash's embedding models for vectorization.
```python
import os
from mem0 import Memory
os.environ["UPSTASH_VECTOR_REST_URL"] = "..."
os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "..."
config = {
"vector_store": {
"provider": "upstash_vector",
"enable_embeddings": True,
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
<Note>
Setting `enable_embeddings` to `True` will bypass any external embedding provider you have configured.
</Note>
### Usage with external embedding providers
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "..."
os.environ["UPSTASH_VECTOR_REST_URL"] = "..."
os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "..."
config = {
"vector_store": {
"provider": "upstash_vector",
},
"embedder": {
"provider": "openai",
"config": {
"model": "text-embedding-3-large"
},
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
Here are the parameters available for configuring Upstash Vector:
| Parameter | Description | Default Value |
| ------------------- | ---------------------------------- | ------------- |
| `url` | URL for the Upstash Vector index | `None` |
| `token` | Token for the Upstash Vector index | `None` |
| `client` | An `upstash_vector.Index` instance | `None` |
| `collection_name` | The default namespace used | `""` |
| `enable_embeddings` | Whether to use Upstash embeddings | `False` |
<Note>
When `url` and `token` are not provided, the `UPSTASH_VECTOR_REST_URL` and
`UPSTASH_VECTOR_REST_TOKEN` environment variables are used.
</Note>

View File

@@ -18,6 +18,7 @@ See the list of supported vector databases below.
<Card title="Qdrant" href="/components/vectordbs/dbs/qdrant"></Card>
<Card title="Chroma" href="/components/vectordbs/dbs/chroma"></Card>
<Card title="Pgvector" href="/components/vectordbs/dbs/pgvector"></Card>
<Card title="Upstash Vector" href="/components/vectordbs/dbs/upstash-vector"></Card>
<Card title="Milvus" href="/components/vectordbs/dbs/milvus"></Card>
<Card title="Pinecone" href="/components/vectordbs/dbs/pinecone"></Card>
<Card title="Azure" href="/components/vectordbs/dbs/azure"></Card>

View File

@@ -0,0 +1,36 @@
import os
from typing import Any, ClassVar, Dict, Optional
from pydantic import BaseModel, Field, model_validator
try:
from upstash_vector import Index
except ImportError:
raise ImportError("The 'upstash_vector' library is required. Please install it using 'pip install upstash_vector'.")
class UpstashVectorConfig(BaseModel):
Index: ClassVar[type] = Index
url: Optional[str] = Field(None, description="URL for Upstash Vector index")
token: Optional[str] = Field(None, description="Token for Upstash Vector index")
client: Optional[Index] = Field(None, description="Existing `upstash_vector.Index` client instance")
collection_name: str = Field("mem0", description="Namespace to use for the index")
enable_embeddings: bool = Field(
False, description="Whether to use built-in upstash embeddings or not. Default is True."
)
@model_validator(mode="before")
@classmethod
def check_credentials_or_client(cls, values: Dict[str, Any]) -> Dict[str, Any]:
client = values.get("client")
url = values.get("url") or os.environ.get("UPSTASH_VECTOR_REST_URL")
token = values.get("token") or os.environ.get("UPSTASH_VECTOR_REST_TOKEN")
if not client and not (url and token):
raise ValueError("Either a client or URL and token must be provided.")
return values
model_config = {
"arbitrary_types_allowed": True,
}

11
mem0/embeddings/mock.py Normal file
View File

@@ -0,0 +1,11 @@
from typing import Literal, Optional
from mem0.embeddings.base import EmbeddingBase
class MockEmbeddings(EmbeddingBase):
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Generate a mock embedding with dimension of 10.
"""
return [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

View File

@@ -12,12 +12,20 @@ from pydantic import ValidationError
from mem0.configs.base import MemoryConfig, MemoryItem
from mem0.configs.enums import MemoryType
from mem0.configs.prompts import PROCEDURAL_MEMORY_SYSTEM_PROMPT, get_update_memory_messages
from mem0.configs.prompts import (
PROCEDURAL_MEMORY_SYSTEM_PROMPT,
get_update_memory_messages,
)
from mem0.memory.base import MemoryBase
from mem0.memory.setup import setup_config
from mem0.memory.storage import SQLiteManager
from mem0.memory.telemetry import capture_event
from mem0.memory.utils import get_fact_retrieval_messages, parse_messages, parse_vision_messages, remove_code_blocks
from mem0.memory.utils import (
get_fact_retrieval_messages,
parse_messages,
parse_vision_messages,
remove_code_blocks,
)
from mem0.utils.factory import EmbedderFactory, LlmFactory, VectorStoreFactory
# Setup user config
@@ -32,7 +40,11 @@ class Memory(MemoryBase):
self.custom_fact_extraction_prompt = self.config.custom_fact_extraction_prompt
self.custom_update_memory_prompt = self.config.custom_update_memory_prompt
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider, self.config.embedder.config)
self.embedding_model = EmbedderFactory.create(
self.config.embedder.provider,
self.config.embedder.config,
self.config.vector_store.config,
)
self.vector_store = VectorStoreFactory.create(
self.config.vector_store.provider, self.config.vector_store.config
)
@@ -260,7 +272,9 @@ class Memory(MemoryBase):
continue
elif resp.get("event") == "ADD":
memory_id = self._create_memory(
data=resp.get("text"), existing_embeddings=new_message_embeddings, metadata=metadata
data=resp.get("text"),
existing_embeddings=new_message_embeddings,
metadata=metadata,
)
returned_memories.append(
{
@@ -300,7 +314,11 @@ class Memory(MemoryBase):
except Exception as e:
logging.error(f"Error in new_memories_with_actions: {e}")
capture_event("mem0.add", self, {"version": self.api_version, "keys": list(filters.keys())})
capture_event(
"mem0.add",
self,
{"version": self.api_version, "keys": list(filters.keys())},
)
return returned_memories
@@ -342,7 +360,16 @@ class Memory(MemoryBase):
).model_dump(exclude={"score"})
# Add metadata if there are additional keys
excluded_keys = {"user_id", "agent_id", "run_id", "hash", "data", "created_at", "updated_at", "id"}
excluded_keys = {
"user_id",
"agent_id",
"run_id",
"hash",
"data",
"created_at",
"updated_at",
"id",
}
additional_metadata = {k: v for k, v in memory.payload.items() if k not in excluded_keys}
if additional_metadata:
memory_item["metadata"] = additional_metadata
@@ -631,7 +658,7 @@ class Memory(MemoryBase):
prompt (str, optional): Prompt to use for the procedural memory creation. Defaults to None.
"""
try:
from langchain_core.messages.utils import convert_to_messages # type: ignore
pass
except Exception:
logger.error(
"Import error while loading langchain-core. Please install 'langchain-core' to use procedural memory."
@@ -643,7 +670,10 @@ class Memory(MemoryBase):
parsed_messages = [
{"role": "system", "content": prompt or PROCEDURAL_MEMORY_SYSTEM_PROMPT},
*messages,
{"role": "user", "content": "Create procedural memory of the above conversation."},
{
"role": "user",
"content": "Create procedural memory of the above conversation.",
},
]
try:
@@ -728,7 +758,9 @@ class Memory(MemoryBase):
self.vector_store = VectorStoreFactory.create(
self.config.vector_store.provider, self.config.vector_store.config
)
print("before dbreset")
self.db.reset()
print("after dbreset")
capture_event("mem0.reset", self)
def chat(self, query):

View File

@@ -1,7 +1,9 @@
import importlib
from typing import Optional
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.configs.llms.base import BaseLlmConfig
from mem0.embeddings.mock import MockEmbeddings
def load_class(class_type):
@@ -54,7 +56,9 @@ class EmbedderFactory:
}
@classmethod
def create(cls, provider_name, config):
def create(cls, provider_name, config, vector_config: Optional[dict]):
if provider_name == "upstash_vector" and vector_config and vector_config.enable_embeddings:
return MockEmbeddings()
class_type = cls.provider_to_class.get(provider_name)
if class_type:
embedder_instance = load_class(class_type)
@@ -70,6 +74,7 @@ class VectorStoreFactory:
"chroma": "mem0.vector_stores.chroma.ChromaDB",
"pgvector": "mem0.vector_stores.pgvector.PGVector",
"milvus": "mem0.vector_stores.milvus.MilvusDB",
"upstash_vector": "mem0.vector_stores.upstash_vector.UpstashVector",
"azure_ai_search": "mem0.vector_stores.azure_ai_search.AzureAISearch",
"pinecone": "mem0.vector_stores.pinecone.PineconeDB",
"redis": "mem0.vector_stores.redis.RedisDB",

View File

@@ -5,7 +5,7 @@ from pydantic import BaseModel, Field, model_validator
class VectorStoreConfig(BaseModel):
provider: str = Field(
description="Provider of the vector store (e.g., 'qdrant', 'chroma')",
description="Provider of the vector store (e.g., 'qdrant', 'chroma', 'upstash_vector')",
default="qdrant",
)
config: Optional[Dict] = Field(description="Configuration for the specific vector store", default=None)
@@ -16,6 +16,7 @@ class VectorStoreConfig(BaseModel):
"pgvector": "PGVectorConfig",
"pinecone": "PineconeConfig",
"milvus": "MilvusDBConfig",
"upstash_vector": "UpstashVectorConfig",
"azure_ai_search": "AzureAISearchConfig",
"redis": "RedisDBConfig",
"elasticsearch": "ElasticsearchConfig",

View File

@@ -0,0 +1,287 @@
import logging
from typing import Dict, List, Optional
from pydantic import BaseModel
from mem0.vector_stores.base import VectorStoreBase
try:
from upstash_vector import Index
except ImportError:
raise ImportError("The 'upstash_vector' library is required. Please install it using 'pip install upstash_vector'.")
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: Optional[str] # memory id
score: Optional[float] # is None for `get` method
payload: Optional[Dict] # metadata
class UpstashVector(VectorStoreBase):
def __init__(
self,
collection_name: str,
url: Optional[str] = None,
token: Optional[str] = None,
client: Optional[Index] = None,
enable_embeddings: bool = False,
):
"""
Initialize the UpstashVector vector store.
Args:
url (str, optional): URL for Upstash Vector index. Defaults to None.
token (int, optional): Token for Upstash Vector index. Defaults to None.
client (Index, optional): Existing `upstash_vector.Index` client instance. Defaults to None.
namespace (str, optional): Default namespace for the index. Defaults to None.
"""
if client:
self.client = client
elif url and token:
self.client = Index(url, token)
else:
raise ValueError("Either a client or URL and token must be provided.")
self.collection_name = collection_name
self.enable_embeddings = enable_embeddings
def insert(
self,
vectors: List[list],
payloads: Optional[List[Dict]] = None,
ids: Optional[List[str]] = None,
):
"""
Insert vectors
Args:
vectors (list): List of vectors to insert.
payloads (list, optional): List of payloads corresponding to vectors. These will be passed as metadatas to the Upstash Vector client. Defaults to None.
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
"""
logger.info(f"Inserting {len(vectors)} vectors into namespace {self.collection_name}")
if self.enable_embeddings:
if not payloads or any("data" not in m or m["data"] is None for m in payloads):
raise ValueError("When embeddings are enabled, all payloads must contain a 'data' field.")
processed_vectors = [
{
"id": ids[i] if ids else None,
"data": payloads[i]["data"],
"metadata": payloads[i],
}
for i, v in enumerate(vectors)
]
else:
processed_vectors = [
{
"id": ids[i] if ids else None,
"vector": vectors[i],
"metadata": payloads[i] if payloads else None,
}
for i, v in enumerate(vectors)
]
self.client.upsert(
vectors=processed_vectors,
namespace=self.collection_name,
)
def _stringify(self, x):
return f'"{x}"' if isinstance(x, str) else x
def search(
self,
query: str,
vectors: List[list],
limit: int = 5,
filters: Optional[Dict] = None,
) -> List[OutputData]:
"""
Search for similar vectors.
Args:
query (list): Query vector.
limit (int, optional): Number of results to return. Defaults to 5.
filters (Dict, optional): Filters to apply to the search.
Returns:
List[OutputData]: Search results.
"""
filters_str = " AND ".join([f"{k} = {self._stringify(v)}" for k, v in filters.items()]) if filters else None
response = []
if self.enable_embeddings:
response = self.client.query(
data=query,
top_k=limit,
filter=filters_str or "",
include_metadata=True,
namespace=self.collection_name,
)
else:
queries = [
{
"vector": v,
"top_k": limit,
"filter": filters_str or "",
"include_metadata": True,
"namespace": self.collection_name,
}
for v in vectors
]
responses = self.client.query_many(queries=queries)
# flatten
response = [res for res_list in responses for res in res_list]
return [
OutputData(
id=res.id,
score=res.score,
payload=res.metadata,
)
for res in response
]
def delete(self, vector_id: int):
"""
Delete a vector by ID.
Args:
vector_id (int): ID of the vector to delete.
"""
self.client.delete(
ids=[str(vector_id)],
namespace=self.collection_name,
)
def update(
self,
vector_id: int,
vector: Optional[list] = None,
payload: Optional[dict] = None,
):
"""
Update a vector and its payload.
Args:
vector_id (int): ID of the vector to update.
vector (list, optional): Updated vector. Defaults to None.
payload (dict, optional): Updated payload. Defaults to None.
"""
self.client.update(
id=str(vector_id),
vector=vector,
data=payload.get("data") if payload else None,
metadata=payload,
namespace=self.collection_name,
)
def get(self, vector_id: int) -> Optional[OutputData]:
"""
Retrieve a vector by ID.
Args:
vector_id (int): ID of the vector to retrieve.
Returns:
dict: Retrieved vector.
"""
response = self.client.fetch(
ids=[str(vector_id)],
namespace=self.collection_name,
include_metadata=True,
)
if len(response) == 0:
return None
vector = response[0]
if not vector:
return None
return OutputData(id=vector.id, score=None, payload=vector.metadata)
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[List[OutputData]]:
"""
List all memories.
Args:
filters (Dict, optional): Filters to apply to the search. Defaults to None.
limit (int, optional): Number of results to return. Defaults to 100.
Returns:
List[OutputData]: Search results.
"""
filters_str = " AND ".join([f"{k} = {self._stringify(v)}" for k, v in filters.items()]) if filters else None
info = self.client.info()
ns_info = info.namespaces.get(self.collection_name)
if not ns_info or ns_info.vector_count == 0:
return [[]]
random_vector = [1.0] * self.client.info().dimension
results, query = self.client.resumable_query(
vector=random_vector,
filter=filters_str or "",
include_metadata=True,
namespace=self.collection_name,
top_k=100,
)
with query:
while True:
if len(results) >= limit:
break
res = query.fetch_next(100)
if not res:
break
results.extend(res)
parsed_result = [
OutputData(
id=res.id,
score=res.score,
payload=res.metadata,
)
for res in results
]
return [parsed_result]
def create_col(self, name, vector_size, distance):
"""
Upstash Vector has namespaces instead of collections. A namespace is created when the first vector is inserted.
This method is a placeholder to maintain the interface.
"""
pass
def list_cols(self) -> List[str]:
"""
Lists all namespaces in the Upstash Vector index.
Returns:
List[str]: List of namespaces.
"""
return self.client.list_namespaces()
def delete_col(self):
"""
Delete the namespace and all vectors in it.
"""
self.client.reset(namespace=self.collection_name)
pass
def col_info(self):
"""
Return general information about the Upstash Vector index.
- Total number of vectors across all namespaces
- Total number of vectors waiting to be indexed across all namespaces
- Total size of the index on disk in bytes
- Vector dimension
- Similarity function used
- Per-namespace vector and pending vector counts
"""
return self.client.info()

View File

@@ -0,0 +1,384 @@
from dataclasses import dataclass
from typing import Dict, List, Optional
from unittest.mock import MagicMock, call, patch
import pytest
from mem0.vector_stores.upstash_vector import UpstashVector
@dataclass
class QueryResult:
id: str
score: Optional[float]
vector: Optional[List[float]] = None
metadata: Optional[Dict] = None
data: Optional[str] = None
@pytest.fixture
def mock_index():
with patch("upstash_vector.Index") as mock_index:
yield mock_index
@pytest.fixture
def upstash_instance(mock_index):
return UpstashVector(client=mock_index.return_value, collection_name="ns")
@pytest.fixture
def upstash_instance_with_embeddings(mock_index):
return UpstashVector(
client=mock_index.return_value, collection_name="ns", enable_embeddings=True
)
def test_insert_vectors(upstash_instance, mock_index):
vectors = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
payloads = [{"name": "vector1"}, {"name": "vector2"}]
ids = ["id1", "id2"]
upstash_instance.insert(vectors=vectors, payloads=payloads, ids=ids)
upstash_instance.client.upsert.assert_called_once_with(
vectors=[
{"id": "id1", "vector": [0.1, 0.2, 0.3], "metadata": {"name": "vector1"}},
{"id": "id2", "vector": [0.4, 0.5, 0.6], "metadata": {"name": "vector2"}},
],
namespace="ns",
)
def test_search_vectors(upstash_instance, mock_index):
mock_result = [
QueryResult(
id="id1", score=0.1, vector=None, metadata={"name": "vector1"}, data=None
),
QueryResult(
id="id2", score=0.2, vector=None, metadata={"name": "vector2"}, data=None
),
]
upstash_instance.client.query_many.return_value = [mock_result]
vectors = [[0.1, 0.2, 0.3]]
results = upstash_instance.search(
query="hello world",
vectors=vectors,
limit=2,
filters={"age": 30, "name": "John"},
)
upstash_instance.client.query_many.assert_called_once_with(
queries=[
{
"vector": vectors[0],
"top_k": 2,
"namespace": "ns",
"include_metadata": True,
"filter": 'age = 30 AND name = "John"',
}
]
)
assert len(results) == 2
assert results[0].id == "id1"
assert results[0].score == 0.1
assert results[0].payload == {"name": "vector1"}
def test_delete_vector(upstash_instance):
vector_id = "id1"
upstash_instance.delete(vector_id=vector_id)
upstash_instance.client.delete.assert_called_once_with(
ids=[vector_id], namespace="ns"
)
def test_update_vector(upstash_instance):
vector_id = "id1"
new_vector = [0.7, 0.8, 0.9]
new_payload = {"name": "updated_vector"}
upstash_instance.update(vector_id=vector_id, vector=new_vector, payload=new_payload)
upstash_instance.client.update.assert_called_once_with(
id="id1",
vector=new_vector,
data=None,
metadata={"name": "updated_vector"},
namespace="ns",
)
def test_get_vector(upstash_instance):
mock_result = [
QueryResult(
id="id1", score=None, vector=None, metadata={"name": "vector1"}, data=None
)
]
upstash_instance.client.fetch.return_value = mock_result
result = upstash_instance.get(vector_id="id1")
upstash_instance.client.fetch.assert_called_once_with(
ids=["id1"], namespace="ns", include_metadata=True
)
assert result.id == "id1"
assert result.payload == {"name": "vector1"}
def test_list_vectors(upstash_instance):
mock_result = [
QueryResult(
id="id1", score=None, vector=None, metadata={"name": "vector1"}, data=None
),
QueryResult(
id="id2", score=None, vector=None, metadata={"name": "vector2"}, data=None
),
QueryResult(
id="id3", score=None, vector=None, metadata={"name": "vector3"}, data=None
),
]
handler = MagicMock()
upstash_instance.client.info.return_value.dimension = 10
upstash_instance.client.resumable_query.return_value = (mock_result[0:1], handler)
handler.fetch_next.side_effect = [mock_result[1:2], mock_result[2:3], []]
filters = {"age": 30, "name": "John"}
print("filters", filters)
[results] = upstash_instance.list(filters=filters, limit=15)
upstash_instance.client.info.return_value = {
"dimension": 10,
}
upstash_instance.client.resumable_query.assert_called_once_with(
vector=[1.0] * 10,
filter='age = 30 AND name = "John"',
include_metadata=True,
namespace="ns",
top_k=100,
)
handler.fetch_next.assert_has_calls([call(100), call(100), call(100)])
handler.__exit__.assert_called_once()
assert len(results) == len(mock_result)
assert results[0].id == "id1"
assert results[0].payload == {"name": "vector1"}
def test_insert_vectors_with_embeddings(upstash_instance_with_embeddings, mock_index):
vectors = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
payloads = [
{"name": "vector1", "data": "data1"},
{"name": "vector2", "data": "data2"},
]
ids = ["id1", "id2"]
upstash_instance_with_embeddings.insert(vectors=vectors, payloads=payloads, ids=ids)
upstash_instance_with_embeddings.client.upsert.assert_called_once_with(
vectors=[
{
"id": "id1",
# Uses the data field instead of using vectors
"data": "data1",
"metadata": {"name": "vector1", "data": "data1"},
},
{
"id": "id2",
"data": "data2",
"metadata": {"name": "vector2", "data": "data2"},
},
],
namespace="ns",
)
def test_search_vectors_with_embeddings(upstash_instance_with_embeddings, mock_index):
mock_result = [
QueryResult(
id="id1", score=0.1, vector=None, metadata={"name": "vector1"}, data="data1"
),
QueryResult(
id="id2", score=0.2, vector=None, metadata={"name": "vector2"}, data="data2"
),
]
upstash_instance_with_embeddings.client.query.return_value = mock_result
results = upstash_instance_with_embeddings.search(
query="hello world",
vectors=[],
limit=2,
filters={"age": 30, "name": "John"},
)
upstash_instance_with_embeddings.client.query.assert_called_once_with(
# Uses the data field instead of using vectors
data="hello world",
top_k=2,
filter='age = 30 AND name = "John"',
include_metadata=True,
namespace="ns",
)
assert len(results) == 2
assert results[0].id == "id1"
assert results[0].score == 0.1
assert results[0].payload == {"name": "vector1"}
def test_update_vector_with_embeddings(upstash_instance_with_embeddings):
vector_id = "id1"
new_payload = {"name": "updated_vector", "data": "updated_data"}
upstash_instance_with_embeddings.update(vector_id=vector_id, payload=new_payload)
upstash_instance_with_embeddings.client.update.assert_called_once_with(
id="id1",
vector=None,
data="updated_data",
metadata={"name": "updated_vector", "data": "updated_data"},
namespace="ns",
)
def test_insert_vectors_with_embeddings_missing_data(upstash_instance_with_embeddings):
vectors = [[0.1, 0.2, 0.3]]
payloads = [{"name": "vector1"}] # Missing data field
ids = ["id1"]
with pytest.raises(
ValueError,
match="When embeddings are enabled, all payloads must contain a 'data' field",
):
upstash_instance_with_embeddings.insert(
vectors=vectors, payloads=payloads, ids=ids
)
def test_update_vector_with_embeddings_missing_data(upstash_instance_with_embeddings):
# Should still work, data is not required for update
vector_id = "id1"
new_payload = {"name": "updated_vector"} # Missing data field
upstash_instance_with_embeddings.update(vector_id=vector_id, payload=new_payload)
upstash_instance_with_embeddings.client.update.assert_called_once_with(
id="id1",
vector=None,
data=None,
metadata={"name": "updated_vector"},
namespace="ns",
)
def test_list_cols(upstash_instance):
mock_namespaces = ["ns1", "ns2", "ns3"]
upstash_instance.client.list_namespaces.return_value = mock_namespaces
result = upstash_instance.list_cols()
upstash_instance.client.list_namespaces.assert_called_once()
assert result == mock_namespaces
def test_delete_col(upstash_instance):
upstash_instance.delete_col()
upstash_instance.client.reset.assert_called_once_with(namespace="ns")
def test_col_info(upstash_instance):
mock_info = {
"dimension": 10,
"total_vectors": 100,
"pending_vectors": 0,
"disk_size": 1024,
}
upstash_instance.client.info.return_value = mock_info
result = upstash_instance.col_info()
upstash_instance.client.info.assert_called_once()
assert result == mock_info
def test_get_vector_not_found(upstash_instance):
upstash_instance.client.fetch.return_value = []
result = upstash_instance.get(vector_id="nonexistent")
upstash_instance.client.fetch.assert_called_once_with(
ids=["nonexistent"], namespace="ns", include_metadata=True
)
assert result is None
def test_search_vectors_empty_filters(upstash_instance):
mock_result = [
QueryResult(
id="id1", score=0.1, vector=None, metadata={"name": "vector1"}, data=None
)
]
upstash_instance.client.query_many.return_value = [mock_result]
vectors = [[0.1, 0.2, 0.3]]
results = upstash_instance.search(
query="hello world",
vectors=vectors,
limit=1,
filters=None,
)
upstash_instance.client.query_many.assert_called_once_with(
queries=[
{
"vector": vectors[0],
"top_k": 1,
"namespace": "ns",
"include_metadata": True,
"filter": "",
}
]
)
assert len(results) == 1
assert results[0].id == "id1"
def test_insert_vectors_no_payloads(upstash_instance):
vectors = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
ids = ["id1", "id2"]
upstash_instance.insert(vectors=vectors, ids=ids)
upstash_instance.client.upsert.assert_called_once_with(
vectors=[
{"id": "id1", "vector": [0.1, 0.2, 0.3], "metadata": None},
{"id": "id2", "vector": [0.4, 0.5, 0.6], "metadata": None},
],
namespace="ns",
)
def test_insert_vectors_no_ids(upstash_instance):
vectors = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
payloads = [{"name": "vector1"}, {"name": "vector2"}]
upstash_instance.insert(vectors=vectors, payloads=payloads)
upstash_instance.client.upsert.assert_called_once_with(
vectors=[
{"id": None, "vector": [0.1, 0.2, 0.3], "metadata": {"name": "vector1"}},
{"id": None, "vector": [0.4, 0.5, 0.6], "metadata": {"name": "vector2"}},
],
namespace="ns",
)