Support for hybrid search in Azure AI vector store (#2408)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
@@ -35,12 +35,11 @@ def test_search_vectors(chromadb_instance, mock_chromadb_client):
|
||||
}
|
||||
chromadb_instance.collection.query.return_value = mock_result
|
||||
|
||||
query = [[0.1, 0.2, 0.3]]
|
||||
results = chromadb_instance.search(query=query, limit=2)
|
||||
vectors = [[0.1, 0.2, 0.3]]
|
||||
results = chromadb_instance.search(query="", vectors=vectors, limit=2)
|
||||
|
||||
chromadb_instance.collection.query.assert_called_once_with(query_embeddings=query, where=None, n_results=2)
|
||||
chromadb_instance.collection.query.assert_called_once_with(query_embeddings=vectors, where=None, n_results=2)
|
||||
|
||||
print(results, type(results))
|
||||
assert len(results) == 2
|
||||
assert results[0].id == "id1"
|
||||
assert results[0].score == 0.1
|
||||
|
||||
@@ -196,8 +196,8 @@ class TestElasticsearchDB(unittest.TestCase):
|
||||
self.client_mock.search.return_value = mock_response
|
||||
|
||||
# Perform search
|
||||
query_vector = [0.1] * 1536
|
||||
results = self.es_db.search(query=query_vector, limit=5)
|
||||
vectors = [[0.1] * 1536]
|
||||
results = self.es_db.search(query="", vectors=vectors, limit=5)
|
||||
|
||||
# Verify search call
|
||||
self.client_mock.search.assert_called_once()
|
||||
@@ -210,7 +210,7 @@ class TestElasticsearchDB(unittest.TestCase):
|
||||
# Verify KNN query structure
|
||||
self.assertIn("knn", body)
|
||||
self.assertEqual(body["knn"]["field"], "vector")
|
||||
self.assertEqual(body["knn"]["query_vector"], query_vector)
|
||||
self.assertEqual(body["knn"]["query_vector"], vectors)
|
||||
self.assertEqual(body["knn"]["k"], 5)
|
||||
self.assertEqual(body["knn"]["num_candidates"], 10)
|
||||
|
||||
@@ -226,13 +226,13 @@ class TestElasticsearchDB(unittest.TestCase):
|
||||
self.es_db.custom_search_query.return_value = {"custom_key": "custom_value"}
|
||||
|
||||
# Perform search
|
||||
query_vector = [0.1] * 1536
|
||||
vectors = [[0.1] * 1536]
|
||||
limit = 5
|
||||
filters = {"key1": "value1"}
|
||||
self.es_db.search(query=query_vector, limit=limit, filters=filters)
|
||||
self.es_db.search(query="", vectors=vectors, limit=limit, filters=filters)
|
||||
|
||||
# Verify custom search query function was called
|
||||
self.es_db.custom_search_query.assert_called_once_with(query_vector, limit, filters)
|
||||
self.es_db.custom_search_query.assert_called_once_with(vectors, limit, filters)
|
||||
|
||||
# Verify custom search query was used
|
||||
self.client_mock.search.assert_called_once_with(index=self.es_db.collection_name, body={"custom_key": "custom_value"})
|
||||
|
||||
@@ -126,15 +126,15 @@ class TestOpenSearchDB(unittest.TestCase):
|
||||
def test_search(self):
|
||||
mock_response = {"hits": {"hits": [{"_id": "id1", "_score": 0.8, "_source": {"vector": [0.1] * 1536, "metadata": {"key1": "value1"}}}]}}
|
||||
self.client_mock.search.return_value = mock_response
|
||||
query_vector = [0.1] * 1536
|
||||
results = self.os_db.search(query=query_vector, limit=5)
|
||||
vectors = [[0.1] * 1536]
|
||||
results = self.os_db.search(query="", vectors=vectors, limit=5)
|
||||
self.client_mock.search.assert_called_once()
|
||||
search_args = self.client_mock.search.call_args[1]
|
||||
self.assertEqual(search_args["index"], "test_collection")
|
||||
body = search_args["body"]
|
||||
self.assertIn("knn", body["query"])
|
||||
self.assertIn("vector", body["query"]["knn"])
|
||||
self.assertEqual(body["query"]["knn"]["vector"]["vector"], query_vector)
|
||||
self.assertEqual(body["query"]["knn"]["vector"]["vector"], vectors)
|
||||
self.assertEqual(body["query"]["knn"]["vector"]["k"], 5)
|
||||
self.assertEqual(len(results), 1)
|
||||
self.assertEqual(results[0].id, "id1")
|
||||
|
||||
@@ -50,15 +50,15 @@ class TestQdrant(unittest.TestCase):
|
||||
self.assertEqual(points[0].payload, payloads[0])
|
||||
|
||||
def test_search(self):
|
||||
query_vector = [0.1, 0.2]
|
||||
vectors = [[0.1, 0.2]]
|
||||
mock_point = MagicMock(id=str(uuid.uuid4()), score=0.95, payload={"key": "value"})
|
||||
self.client_mock.query_points.return_value = MagicMock(points=[mock_point])
|
||||
|
||||
results = self.qdrant.search(query=query_vector, limit=1)
|
||||
results = self.qdrant.search(query="", vectors=vectors, limit=1)
|
||||
|
||||
self.client_mock.query_points.assert_called_once_with(
|
||||
collection_name="test_collection",
|
||||
query=query_vector,
|
||||
query=vectors,
|
||||
query_filter=None,
|
||||
limit=1,
|
||||
)
|
||||
|
||||
@@ -77,12 +77,12 @@ def test_search_vectors(supabase_instance, mock_collection):
|
||||
]
|
||||
mock_collection.query.return_value = mock_results
|
||||
|
||||
query = [0.1, 0.2, 0.3]
|
||||
vectors = [[0.1, 0.2, 0.3]]
|
||||
filters = {"category": "test"}
|
||||
results = supabase_instance.search(query=query, limit=2, filters=filters)
|
||||
results = supabase_instance.search(query="", vectors=vectors, limit=2, filters=filters)
|
||||
|
||||
mock_collection.query.assert_called_once_with(
|
||||
data=query,
|
||||
data=vectors,
|
||||
limit=2,
|
||||
filters={"category": {"$eq": "test"}},
|
||||
include_metadata=True,
|
||||
|
||||
@@ -73,12 +73,12 @@ def test_insert_vectors(vector_store, mock_vertex_ai):
|
||||
|
||||
def test_search_vectors(vector_store, mock_vertex_ai):
|
||||
"""Test searching vectors with filters"""
|
||||
query = [0.1, 0.2, 0.3]
|
||||
vectors = [[0.1, 0.2, 0.3]]
|
||||
filters = {"user_id": "test_user"}
|
||||
|
||||
mock_datapoint = Mock()
|
||||
mock_datapoint.datapoint_id = "test-id"
|
||||
mock_datapoint.feature_vector = query
|
||||
mock_datapoint.feature_vector = vectors
|
||||
|
||||
mock_restrict = Mock()
|
||||
mock_restrict.namespace = "user_id"
|
||||
@@ -96,11 +96,11 @@ def test_search_vectors(vector_store, mock_vertex_ai):
|
||||
|
||||
mock_vertex_ai['endpoint'].find_neighbors.return_value = [[mock_neighbor]]
|
||||
|
||||
results = vector_store.search(query=query, filters=filters, limit=1)
|
||||
results = vector_store.search(query="", vectors=vectors, filters=filters, limit=1)
|
||||
|
||||
mock_vertex_ai['endpoint'].find_neighbors.assert_called_once_with(
|
||||
deployed_index_id=vector_store.deployment_index_id,
|
||||
queries=[query],
|
||||
queries=[vectors],
|
||||
num_neighbors=1,
|
||||
filter=[Namespace("user_id", ["test_user"], [])],
|
||||
return_full_datapoint=True
|
||||
|
||||
@@ -147,8 +147,8 @@ class TestWeaviateDB(unittest.TestCase):
|
||||
self.client_mock.collections.get.return_value.query.hybrid = mock_hybrid
|
||||
mock_hybrid.return_value = mock_response
|
||||
|
||||
query_vector = [0.1] * 1536
|
||||
results = self.weaviate_db.search(query=query_vector, limit=5)
|
||||
vectors = [[0.1] * 1536]
|
||||
results = self.weaviate_db.search(query="", vectors=vectors, limit=5)
|
||||
|
||||
mock_hybrid.assert_called_once()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user