Support for hybrid search in Azure AI vector store (#2408)

Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
Dev Khant
2025-03-20 22:57:00 +05:30
committed by GitHub
parent 8b9a8e5825
commit 8e6a08aa83
24 changed files with 275 additions and 294 deletions

View File

@@ -101,12 +101,12 @@ class RedisDB(VectorStoreBase):
data.append(entry)
self.index.load(data, id_field="memory_id")
def search(self, query: list, limit: int = 5, filters: dict = None):
def search(self, query: str, vectors: list, limit: int = 5, filters: dict = None):
conditions = [Tag(key) == value for key, value in filters.items() if value is not None]
filter = reduce(lambda x, y: x & y, conditions)
v = VectorQuery(
vector=np.array(query, dtype=np.float32).tobytes(),
vector=np.array(vectors, dtype=np.float32).tobytes(),
vector_field_name="embedding",
return_fields=["memory_id", "hash", "agent_id", "run_id", "user_id", "memory", "metadata", "created_at"],
filter_expression=filter,