Support for hybrid search in Azure AI vector store (#2408)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
@@ -127,12 +127,13 @@ class Qdrant(VectorStoreBase):
|
||||
conditions.append(FieldCondition(key=key, match=MatchValue(value=value)))
|
||||
return Filter(must=conditions) if conditions else None
|
||||
|
||||
def search(self, query: list, limit: int = 5, filters: dict = None) -> list:
|
||||
def search(self, query: str, vectors: list, limit: int = 5, filters: dict = None) -> list:
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
query (list): Query vector.
|
||||
query (str): Query.
|
||||
vectors (list): Query vector.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (dict, optional): Filters to apply to the search. Defaults to None.
|
||||
|
||||
@@ -142,7 +143,7 @@ class Qdrant(VectorStoreBase):
|
||||
query_filter = self._create_filter(filters) if filters else None
|
||||
hits = self.client.query_points(
|
||||
collection_name=self.collection_name,
|
||||
query=query,
|
||||
query=vectors,
|
||||
query_filter=query_filter,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user