Support for hybrid search in Azure AI vector store (#2408)

Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
Dev Khant
2025-03-20 22:57:00 +05:30
committed by GitHub
parent 8b9a8e5825
commit 8e6a08aa83
24 changed files with 275 additions and 294 deletions

View File

@@ -45,7 +45,7 @@ class ElasticsearchDB(VectorStoreBase):
# Create index only if auto_create_index is True
if config.auto_create_index:
self.create_index()
if config.custom_search_query:
self.custom_search_query = config.custom_search_query
else:
@@ -121,16 +121,20 @@ class ElasticsearchDB(VectorStoreBase):
)
return results
def search(self, query: List[float], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
def search(
self, query: str, vectors: List[float], limit: int = 5, filters: Optional[Dict] = None
) -> List[OutputData]:
"""
Search with two options:
1. Use custom search query if provided
2. Use KNN search on vectors with pre-filtering if no custom search query is provided
"""
if self.custom_search_query:
search_query = self.custom_search_query(query, limit, filters)
search_query = self.custom_search_query(vectors, limit, filters)
else:
search_query = {"knn": {"field": "vector", "query_vector": query, "k": limit, "num_candidates": limit * 2}}
search_query = {
"knn": {"field": "vector", "query_vector": vectors, "k": limit, "num_candidates": limit * 2}
}
if filters:
filter_conditions = []
for key, value in filters.items():