Support for hybrid search in Azure AI vector store (#2408)

Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
Dev Khant
2025-03-20 22:57:00 +05:30
committed by GitHub
parent 8b9a8e5825
commit 8e6a08aa83
24 changed files with 275 additions and 294 deletions

View File

@@ -50,6 +50,24 @@ config = {
}
```
## Using hybrid search
```python
config = {
"vector_store": {
"provider": "azure_ai_search",
"config": {
"service_name": "ai-search-test",
"api_key": "*****",
"collection_name": "mem0",
"embedding_model_dims": 1536,
"hybrid_search": True,
"vector_filter_mode": "postFilter"
}
}
}
```
## Configuration Parameters
| Parameter | Description | Default Value | Options |
@@ -60,6 +78,8 @@ config = {
| `embedding_model_dims` | Dimensions of the embedding model | `1536` | Any integer value |
| `compression_type` | Type of vector compression to use | `none` | `none`, `scalar`, `binary` |
| `use_float16` | Store vectors in half precision (Edm.Half) | `False` | `True`, `False` |
| `vector_filter_mode` | Vector filter mode to use | `preFilter` | `postFilter`, `preFilter` |
| `hybrid_search` | Use hybrid search | `False` | `True`, `False` |
## Notes on Configuration Options
@@ -68,6 +88,10 @@ config = {
- `scalar`: Scalar quantization with reasonable balance of speed and accuracy
- `binary`: Binary quantization for maximum compression with some accuracy trade-off
- **vector_filter_mode**:
- `preFilter`: Applies filters before vector search (faster)
- `postFilter`: Applies filters after vector search (may provide better relevance)
- **use_float16**: Using half precision (float16) reduces storage requirements but may slightly impact accuracy. Useful for very large vector collections.
- **Filterable Fields**: The implementation automatically extracts `user_id`, `run_id`, and `agent_id` fields from payloads for filtering.