Feature/vllm support (#2981)

This commit is contained in:
NiLAy
2025-06-23 13:18:38 +05:30
committed by GitHub
parent 386d8b87ae
commit 89499aedbe
10 changed files with 430 additions and 1 deletions

View File

@@ -58,6 +58,7 @@ config = {
m = Memory.from_config(config)
m.add("Your text here", user_id="user", metadata={"category": "example"})
```
```typescript TypeScript
@@ -76,6 +77,7 @@ const config = {
const memory = new Memory(config);
await memory.add("Your text here", { userId: "user123", metadata: { category: "example" } });
```
</CodeGroup>
## Why is Config Needed?

View File

@@ -0,0 +1,109 @@
---
title: vLLM
---
<Snippet file="paper-release.mdx" />
[vLLM](https://docs.vllm.ai/) is a high-performance inference engine for large language models that provides significant performance improvements for local inference. It's designed to maximize throughput and memory efficiency for serving LLMs.
## Prerequisites
1. **Install vLLM**:
```bash
pip install vllm
```
2. **Start vLLM server**:
```bash
# For testing with a small model
vllm serve microsoft/DialoGPT-medium --port 8000
# For production with a larger model (requires GPU)
vllm serve Qwen/Qwen2.5-32B-Instruct --port 8000
```
## Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
config = {
"llm": {
"provider": "vllm",
"config": {
"model": "Qwen/Qwen2.5-32B-Instruct",
"vllm_base_url": "http://localhost:8000/v1",
"temperature": 0.1,
"max_tokens": 2000,
}
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about thriller movies? They can be quite engaging."},
{"role": "user", "content": "I'm not a big fan of thrillers, but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thrillers and suggest sci-fi movies instead."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})
```
## Configuration Parameters
| Parameter | Description | Default | Environment Variable |
| --------------- | --------------------------------- | ----------------------------- | -------------------- |
| `model` | Model name running on vLLM server | `"Qwen/Qwen2.5-32B-Instruct"` | - |
| `vllm_base_url` | vLLM server URL | `"http://localhost:8000/v1"` | `VLLM_BASE_URL` |
| `api_key` | API key (dummy for local) | `"vllm-api-key"` | `VLLM_API_KEY` |
| `temperature` | Sampling temperature | `0.1` | - |
| `max_tokens` | Maximum tokens to generate | `2000` | - |
## Environment Variables
You can set these environment variables instead of specifying them in config:
```bash
export VLLM_BASE_URL="http://localhost:8000/v1"
export VLLM_API_KEY="your-vllm-api-key"
export OPENAI_API_KEY="your-openai-api-key" # for embeddings
```
## Benefits
- **High Performance**: 2-24x faster inference than standard implementations
- **Memory Efficient**: Optimized memory usage with PagedAttention
- **Local Deployment**: Keep your data private and reduce API costs
- **Easy Integration**: Drop-in replacement for other LLM providers
- **Flexible**: Works with any model supported by vLLM
## Troubleshooting
1. **Server not responding**: Make sure vLLM server is running
```bash
curl http://localhost:8000/health
```
2. **404 errors**: Ensure correct base URL format
```python
"vllm_base_url": "http://localhost:8000/v1" # Note the /v1
```
3. **Model not found**: Check model name matches server
4. **Out of memory**: Try smaller models or reduce `max_model_len`
```bash
vllm serve Qwen/Qwen2.5-32B-Instruct --max-model-len 4096
```
## Config
All available parameters for the `vllm` config are present in [Master List of All Params in Config](../config).