[Bug fix] Fix embedding issue for opensearch and some other vector databases (#1163)

This commit is contained in:
Deshraj Yadav
2024-01-12 14:15:39 +05:30
committed by GitHub
parent c020e65a50
commit 862ff6cca6
13 changed files with 40 additions and 95 deletions

View File

@@ -27,7 +27,7 @@ class BaseChunker(JSONSerializable):
chunk_ids = [] chunk_ids = []
id_map = {} id_map = {}
min_chunk_size = config.min_chunk_size if config is not None else 1 min_chunk_size = config.min_chunk_size if config is not None else 1
logging.info(f"[INFO] Skipping chunks smaller than {min_chunk_size} characters") logging.info(f"Skipping chunks smaller than {min_chunk_size} characters")
data_result = loader.load_data(src) data_result = loader.load_data(src)
data_records = data_result["data"] data_records = data_result["data"]
doc_id = data_result["doc_id"] doc_id = data_result["doc_id"]

View File

@@ -369,7 +369,7 @@ class EmbedChain(JSONSerializable):
metadatas = embeddings_data["metadatas"] metadatas = embeddings_data["metadatas"]
ids = embeddings_data["ids"] ids = embeddings_data["ids"]
new_doc_id = embeddings_data["doc_id"] new_doc_id = embeddings_data["doc_id"]
embeddings = embeddings_data.get("embeddings")
if existing_doc_id and existing_doc_id == new_doc_id: if existing_doc_id and existing_doc_id == new_doc_id:
print("Doc content has not changed. Skipping creating chunks and embeddings") print("Doc content has not changed. Skipping creating chunks and embeddings")
return [], [], [], 0 return [], [], [], 0
@@ -433,13 +433,7 @@ class EmbedChain(JSONSerializable):
# Count before, to calculate a delta in the end. # Count before, to calculate a delta in the end.
chunks_before_addition = self.db.count() chunks_before_addition = self.db.count()
self.db.add( self.db.add(documents=documents, metadatas=metadatas, ids=ids, **kwargs)
embeddings=embeddings,
documents=documents,
metadatas=metadatas,
ids=ids,
**kwargs,
)
count_new_chunks = self.db.count() - chunks_before_addition count_new_chunks = self.db.count() - chunks_before_addition
print(f"Successfully saved {src} ({chunker.data_type}). New chunks count: {count_new_chunks}") print(f"Successfully saved {src} ({chunker.data_type}). New chunks count: {count_new_chunks}")

View File

@@ -129,17 +129,13 @@ class ChromaDB(BaseVectorDB):
def add( def add(
self, self,
embeddings: list[list[float]],
documents: list[str], documents: list[str],
metadatas: list[object], metadatas: list[object],
ids: list[str], ids: list[str],
**kwargs: Optional[dict[str, Any]],
) -> Any: ) -> Any:
""" """
Add vectors to chroma database Add vectors to chroma database
:param embeddings: list of embeddings to add
:type embeddings: list[list[str]]
:param documents: Documents :param documents: Documents
:type documents: list[str] :type documents: list[str]
:param metadatas: Metadatas :param metadatas: Metadatas

View File

@@ -110,7 +110,6 @@ class ElasticsearchDB(BaseVectorDB):
def add( def add(
self, self,
embeddings: list[list[float]],
documents: list[str], documents: list[str],
metadatas: list[object], metadatas: list[object],
ids: list[str], ids: list[str],
@@ -118,8 +117,6 @@ class ElasticsearchDB(BaseVectorDB):
) -> Any: ) -> Any:
""" """
add data in vector database add data in vector database
:param embeddings: list of embeddings to add
:type embeddings: list[list[str]]
:param documents: list of texts to add :param documents: list of texts to add
:type documents: list[str] :type documents: list[str]
:param metadatas: list of metadata associated with docs :param metadatas: list of metadata associated with docs

View File

@@ -114,22 +114,10 @@ class OpenSearchDB(BaseVectorDB):
result["metadatas"].append({"doc_id": doc_id}) result["metadatas"].append({"doc_id": doc_id})
return result return result
def add( def add(self, documents: list[str], metadatas: list[object], ids: list[str], **kwargs: Optional[dict[str, any]]):
self, """Adds documents to the opensearch index"""
embeddings: list[list[str]],
documents: list[str],
metadatas: list[object],
ids: list[str],
**kwargs: Optional[dict[str, any]],
):
"""Add data in vector database.
Args: embeddings = self.embedder.embedding_fn(documents)
embeddings (list[list[str]]): list of embeddings to add.
documents (list[str]): list of texts to add.
metadatas (list[object]): list of metadata associated with docs.
ids (list[str]): IDs of docs.
"""
for batch_start in tqdm(range(0, len(documents), self.BATCH_SIZE), desc="Inserting batches in opensearch"): for batch_start in tqdm(range(0, len(documents), self.BATCH_SIZE), desc="Inserting batches in opensearch"):
batch_end = batch_start + self.BATCH_SIZE batch_end = batch_start + self.BATCH_SIZE
batch_documents = documents[batch_start:batch_end] batch_documents = documents[batch_start:batch_end]

View File

@@ -88,7 +88,6 @@ class PineconeDB(BaseVectorDB):
def add( def add(
self, self,
embeddings: list[list[float]],
documents: list[str], documents: list[str],
metadatas: list[object], metadatas: list[object],
ids: list[str], ids: list[str],

View File

@@ -122,15 +122,12 @@ class QdrantDB(BaseVectorDB):
def add( def add(
self, self,
embeddings: list[list[float]],
documents: list[str], documents: list[str],
metadatas: list[object], metadatas: list[object],
ids: list[str], ids: list[str],
**kwargs: Optional[dict[str, any]], **kwargs: Optional[dict[str, any]],
): ):
"""add data in vector database """add data in vector database
:param embeddings: list of embeddings for the corresponding documents to be added
:type documents: list[list[float]]
:param documents: list of texts to add :param documents: list of texts to add
:type documents: list[str] :type documents: list[str]
:param metadatas: list of metadata associated with docs :param metadatas: list of metadata associated with docs

View File

@@ -1,6 +1,6 @@
import copy import copy
import os import os
from typing import Any, Optional, Union from typing import Optional, Union
try: try:
import weaviate import weaviate
@@ -151,17 +151,8 @@ class WeaviateDB(BaseVectorDB):
return {"ids": existing_ids} return {"ids": existing_ids}
def add( def add(self, documents: list[str], metadatas: list[object], ids: list[str], **kwargs: Optional[dict[str, any]]):
self,
embeddings: list[list[float]],
documents: list[str],
metadatas: list[object],
ids: list[str],
**kwargs: Optional[dict[str, any]],
):
"""add data in vector database """add data in vector database
:param embeddings: list of embeddings for the corresponding documents to be added
:type documents: list[list[float]]
:param documents: list of texts to add :param documents: list of texts to add
:type documents: list[str] :type documents: list[str]
:param metadatas: list of metadata associated with docs :param metadatas: list of metadata associated with docs
@@ -191,12 +182,7 @@ class WeaviateDB(BaseVectorDB):
) )
def query( def query(
self, self, input_query: list[str], n_results: int, where: dict[str, any], citations: bool = False
input_query: list[str],
n_results: int,
where: dict[str, any],
citations: bool = False,
**kwargs: Optional[dict[str, Any]],
) -> Union[list[tuple[str, dict]], list[str]]: ) -> Union[list[tuple[str, dict]], list[str]]:
""" """
query contents from vector database based on vector similarity query contents from vector database based on vector similarity

View File

@@ -108,7 +108,6 @@ class ZillizVectorDB(BaseVectorDB):
def add( def add(
self, self,
embeddings: list[list[float]],
documents: list[str], documents: list[str],
metadatas: list[object], metadatas: list[object],
ids: list[str], ids: list[str],

View File

@@ -28,14 +28,13 @@ class TestEsDB(unittest.TestCase):
# Assert that the Elasticsearch client is stored in the ElasticsearchDB class. # Assert that the Elasticsearch client is stored in the ElasticsearchDB class.
self.assertEqual(self.db.client, mock_client.return_value) self.assertEqual(self.db.client, mock_client.return_value)
# Create some dummy data. # Create some dummy data
embeddings = [[1, 2, 3], [4, 5, 6]]
documents = ["This is a document.", "This is another document."] documents = ["This is a document.", "This is another document."]
metadatas = [{"url": "url_1", "doc_id": "doc_id_1"}, {"url": "url_2", "doc_id": "doc_id_2"}] metadatas = [{"url": "url_1", "doc_id": "doc_id_1"}, {"url": "url_2", "doc_id": "doc_id_2"}]
ids = ["doc_1", "doc_2"] ids = ["doc_1", "doc_2"]
# Add the data to the database. # Add the data to the database.
self.db.add(embeddings, documents, metadatas, ids) self.db.add(documents, metadatas, ids)
search_response = { search_response = {
"hits": { "hits": {

View File

@@ -43,8 +43,8 @@ class TestPinecone:
embedding_function = mock.Mock() embedding_function = mock.Mock()
base_embedder = BaseEmbedder() base_embedder = BaseEmbedder()
base_embedder.set_embedding_fn(embedding_function) base_embedder.set_embedding_fn(embedding_function)
vectors = [[0, 0, 0], [1, 1, 1]] embedding_function.return_value = [[0, 0, 0], [1, 1, 1]]
embedding_function.return_value = vectors
# Create a PineconeDb instance # Create a PineconeDb instance
db = PineconeDB() db = PineconeDB()
app_config = AppConfig(collect_metrics=False) app_config = AppConfig(collect_metrics=False)
@@ -54,7 +54,7 @@ class TestPinecone:
documents = ["This is a document.", "This is another document."] documents = ["This is a document.", "This is another document."]
metadatas = [{}, {}] metadatas = [{}, {}]
ids = ["doc1", "doc2"] ids = ["doc1", "doc2"]
db.add(vectors, documents, metadatas, ids) db.add(documents, metadatas, ids)
expected_pinecone_upsert_args = [ expected_pinecone_upsert_args = [
{"id": "doc1", "values": [0, 0, 0], "metadata": {"text": "This is a document."}}, {"id": "doc1", "values": [0, 0, 0], "metadata": {"text": "This is a document."}},

View File

@@ -75,11 +75,10 @@ class TestQdrantDB(unittest.TestCase):
app_config = AppConfig(collect_metrics=False) app_config = AppConfig(collect_metrics=False)
App(config=app_config, db=db, embedding_model=embedder) App(config=app_config, db=db, embedding_model=embedder)
embeddings = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
documents = ["This is a test document.", "This is another test document."] documents = ["This is a test document.", "This is another test document."]
metadatas = [{}, {}] metadatas = [{}, {}]
ids = ["123", "456"] ids = ["123", "456"]
db.add(embeddings, documents, metadatas, ids) db.add(documents, metadatas, ids)
qdrant_client_mock.return_value.upsert.assert_called_once_with( qdrant_client_mock.return_value.upsert.assert_called_once_with(
collection_name="embedchain-store-1526", collection_name="embedchain-store-1526",
points=Batch( points=Batch(
@@ -96,7 +95,7 @@ class TestQdrantDB(unittest.TestCase):
"metadata": {"text": "This is another test document."}, "metadata": {"text": "This is another test document."},
}, },
], ],
vectors=embeddings, vectors=[[1, 2, 3], [4, 5, 6]],
), ),
) )

View File

@@ -29,7 +29,7 @@ class TestWeaviateDb(unittest.TestCase):
weaviate_client_schema_mock.exists.return_value = False weaviate_client_schema_mock.exists.return_value = False
# Set the embedder # Set the embedder
embedder = BaseEmbedder() embedder = BaseEmbedder()
embedder.set_vector_dimension(1526) embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn) embedder.set_embedding_fn(mock_embedding_fn)
# Create a Weaviate instance # Create a Weaviate instance
@@ -40,7 +40,7 @@ class TestWeaviateDb(unittest.TestCase):
expected_class_obj = { expected_class_obj = {
"classes": [ "classes": [
{ {
"class": "Embedchain_store_1526", "class": "Embedchain_store_1536",
"vectorizer": "none", "vectorizer": "none",
"properties": [ "properties": [
{ {
@@ -53,12 +53,12 @@ class TestWeaviateDb(unittest.TestCase):
}, },
{ {
"name": "metadata", "name": "metadata",
"dataType": ["Embedchain_store_1526_metadata"], "dataType": ["Embedchain_store_1536_metadata"],
}, },
], ],
}, },
{ {
"class": "Embedchain_store_1526_metadata", "class": "Embedchain_store_1536_metadata",
"vectorizer": "none", "vectorizer": "none",
"properties": [ "properties": [
{ {
@@ -88,7 +88,7 @@ class TestWeaviateDb(unittest.TestCase):
# Assert that the Weaviate client was initialized # Assert that the Weaviate client was initialized
weaviate_mock.Client.assert_called_once() weaviate_mock.Client.assert_called_once()
self.assertEqual(db.index_name, "Embedchain_store_1526") self.assertEqual(db.index_name, "Embedchain_store_1536")
weaviate_client_schema_mock.create.assert_called_once_with(expected_class_obj) weaviate_client_schema_mock.create.assert_called_once_with(expected_class_obj)
@patch("embedchain.vectordb.weaviate.weaviate") @patch("embedchain.vectordb.weaviate.weaviate")
@@ -97,7 +97,7 @@ class TestWeaviateDb(unittest.TestCase):
weaviate_client_mock = weaviate_mock.Client.return_value weaviate_client_mock = weaviate_mock.Client.return_value
embedder = BaseEmbedder() embedder = BaseEmbedder()
embedder.set_vector_dimension(1526) embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn) embedder.set_embedding_fn(mock_embedding_fn)
# Create a Weaviate instance # Create a Weaviate instance
@@ -117,7 +117,7 @@ class TestWeaviateDb(unittest.TestCase):
# Set the embedder # Set the embedder
embedder = BaseEmbedder() embedder = BaseEmbedder()
embedder.set_vector_dimension(1526) embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn) embedder.set_embedding_fn(mock_embedding_fn)
# Create a Weaviate instance # Create a Weaviate instance
@@ -126,30 +126,21 @@ class TestWeaviateDb(unittest.TestCase):
App(config=app_config, db=db, embedding_model=embedder) App(config=app_config, db=db, embedding_model=embedder)
db.BATCH_SIZE = 1 db.BATCH_SIZE = 1
embeddings = [[1, 2, 3], [4, 5, 6]] documents = ["This is test document"]
documents = ["This is a test document.", "This is another test document."] metadatas = [None]
metadatas = [None, None] ids = ["id_1"]
ids = ["123", "456"] db.add(documents, metadatas, ids)
db.add(embeddings, documents, metadatas, ids)
# Check if the document was added to the database. # Check if the document was added to the database.
weaviate_client_batch_mock.configure.assert_called_once_with(batch_size=1, timeout_retries=3) weaviate_client_batch_mock.configure.assert_called_once_with(batch_size=1, timeout_retries=3)
weaviate_client_batch_enter_mock.add_data_object.assert_any_call( weaviate_client_batch_enter_mock.add_data_object.assert_any_call(
data_object={"text": documents[0]}, class_name="Embedchain_store_1526_metadata", vector=embeddings[0] data_object={"text": documents[0]}, class_name="Embedchain_store_1536_metadata", vector=[1, 2, 3]
)
weaviate_client_batch_enter_mock.add_data_object.assert_any_call(
data_object={"text": documents[1]}, class_name="Embedchain_store_1526_metadata", vector=embeddings[1]
) )
weaviate_client_batch_enter_mock.add_data_object.assert_any_call( weaviate_client_batch_enter_mock.add_data_object.assert_any_call(
data_object={"identifier": ids[0], "text": documents[0]}, data_object={"text": documents[0]},
class_name="Embedchain_store_1526", class_name="Embedchain_store_1536_metadata",
vector=embeddings[0], vector=[1, 2, 3],
)
weaviate_client_batch_enter_mock.add_data_object.assert_any_call(
data_object={"identifier": ids[1], "text": documents[1]},
class_name="Embedchain_store_1526",
vector=embeddings[1],
) )
@patch("embedchain.vectordb.weaviate.weaviate") @patch("embedchain.vectordb.weaviate.weaviate")
@@ -161,7 +152,7 @@ class TestWeaviateDb(unittest.TestCase):
# Set the embedder # Set the embedder
embedder = BaseEmbedder() embedder = BaseEmbedder()
embedder.set_vector_dimension(1526) embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn) embedder.set_embedding_fn(mock_embedding_fn)
# Create a Weaviate instance # Create a Weaviate instance
@@ -172,7 +163,7 @@ class TestWeaviateDb(unittest.TestCase):
# Query for the document. # Query for the document.
db.query(input_query=["This is a test document."], n_results=1, where={}) db.query(input_query=["This is a test document."], n_results=1, where={})
weaviate_client_query_mock.get.assert_called_once_with("Embedchain_store_1526", ["text"]) weaviate_client_query_mock.get.assert_called_once_with("Embedchain_store_1536", ["text"])
weaviate_client_query_get_mock.with_near_vector.assert_called_once_with({"vector": [1, 2, 3]}) weaviate_client_query_get_mock.with_near_vector.assert_called_once_with({"vector": [1, 2, 3]})
@patch("embedchain.vectordb.weaviate.weaviate") @patch("embedchain.vectordb.weaviate.weaviate")
@@ -185,7 +176,7 @@ class TestWeaviateDb(unittest.TestCase):
# Set the embedder # Set the embedder
embedder = BaseEmbedder() embedder = BaseEmbedder()
embedder.set_vector_dimension(1526) embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn) embedder.set_embedding_fn(mock_embedding_fn)
# Create a Weaviate instance # Create a Weaviate instance
@@ -196,9 +187,9 @@ class TestWeaviateDb(unittest.TestCase):
# Query for the document. # Query for the document.
db.query(input_query=["This is a test document."], n_results=1, where={"doc_id": "123"}) db.query(input_query=["This is a test document."], n_results=1, where={"doc_id": "123"})
weaviate_client_query_mock.get.assert_called_once_with("Embedchain_store_1526", ["text"]) weaviate_client_query_mock.get.assert_called_once_with("Embedchain_store_1536", ["text"])
weaviate_client_query_get_mock.with_where.assert_called_once_with( weaviate_client_query_get_mock.with_where.assert_called_once_with(
{"operator": "Equal", "path": ["metadata", "Embedchain_store_1526_metadata", "doc_id"], "valueText": "123"} {"operator": "Equal", "path": ["metadata", "Embedchain_store_1536_metadata", "doc_id"], "valueText": "123"}
) )
weaviate_client_query_get_where_mock.with_near_vector.assert_called_once_with({"vector": [1, 2, 3]}) weaviate_client_query_get_where_mock.with_near_vector.assert_called_once_with({"vector": [1, 2, 3]})
@@ -210,7 +201,7 @@ class TestWeaviateDb(unittest.TestCase):
# Set the embedder # Set the embedder
embedder = BaseEmbedder() embedder = BaseEmbedder()
embedder.set_vector_dimension(1526) embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn) embedder.set_embedding_fn(mock_embedding_fn)
# Create a Weaviate instance # Create a Weaviate instance
@@ -222,7 +213,7 @@ class TestWeaviateDb(unittest.TestCase):
db.reset() db.reset()
weaviate_client_batch_mock.delete_objects.assert_called_once_with( weaviate_client_batch_mock.delete_objects.assert_called_once_with(
"Embedchain_store_1526", where={"path": ["identifier"], "operator": "Like", "valueText": ".*"} "Embedchain_store_1536", where={"path": ["identifier"], "operator": "Like", "valueText": ".*"}
) )
@patch("embedchain.vectordb.weaviate.weaviate") @patch("embedchain.vectordb.weaviate.weaviate")
@@ -233,7 +224,7 @@ class TestWeaviateDb(unittest.TestCase):
# Set the embedder # Set the embedder
embedder = BaseEmbedder() embedder = BaseEmbedder()
embedder.set_vector_dimension(1526) embedder.set_vector_dimension(1536)
embedder.set_embedding_fn(mock_embedding_fn) embedder.set_embedding_fn(mock_embedding_fn)
# Create a Weaviate instance # Create a Weaviate instance
@@ -244,4 +235,4 @@ class TestWeaviateDb(unittest.TestCase):
# Reset the database. # Reset the database.
db.count() db.count()
weaviate_client_query.aggregate.assert_called_once_with("Embedchain_store_1526") weaviate_client_query.aggregate.assert_called_once_with("Embedchain_store_1536")