[Bug fix] Fix issues related to logging configuration (#1318)
This commit is contained in:
@@ -91,6 +91,7 @@ keys = console
|
||||
keys = generic
|
||||
|
||||
[logger_root]
|
||||
level = WARN
|
||||
handlers = console
|
||||
qualname =
|
||||
|
||||
|
||||
@@ -9,9 +9,14 @@ import requests
|
||||
import yaml
|
||||
from tqdm import tqdm
|
||||
|
||||
from embedchain.cache import (Config, ExactMatchEvaluation,
|
||||
SearchDistanceEvaluation, cache,
|
||||
gptcache_data_manager, gptcache_pre_function)
|
||||
from embedchain.cache import (
|
||||
Config,
|
||||
ExactMatchEvaluation,
|
||||
SearchDistanceEvaluation,
|
||||
cache,
|
||||
gptcache_data_manager,
|
||||
gptcache_pre_function,
|
||||
)
|
||||
from embedchain.client import Client
|
||||
from embedchain.config import AppConfig, CacheConfig, ChunkerConfig
|
||||
from embedchain.core.db.database import get_session, init_db, setup_engine
|
||||
@@ -20,8 +25,7 @@ from embedchain.embedchain import EmbedChain
|
||||
from embedchain.embedder.base import BaseEmbedder
|
||||
from embedchain.embedder.openai import OpenAIEmbedder
|
||||
from embedchain.evaluation.base import BaseMetric
|
||||
from embedchain.evaluation.metrics import (AnswerRelevance, ContextRelevance,
|
||||
Groundedness)
|
||||
from embedchain.evaluation.metrics import AnswerRelevance, ContextRelevance, Groundedness
|
||||
from embedchain.factory import EmbedderFactory, LlmFactory, VectorDBFactory
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
from embedchain.llm.base import BaseLlm
|
||||
@@ -83,12 +87,10 @@ class App(EmbedChain):
|
||||
if name and config:
|
||||
raise Exception("Cannot provide both name and config. Please provide only one of them.")
|
||||
|
||||
logger.debug("4.0")
|
||||
# Initialize the metadata db for the app
|
||||
setup_engine(database_uri=os.environ.get("EMBEDCHAIN_DB_URI"))
|
||||
init_db()
|
||||
|
||||
logger.debug("4.0")
|
||||
self.auto_deploy = auto_deploy
|
||||
# Store the dict config as an attribute to be able to send it
|
||||
self.config_data = config_data if (config_data and validate_config(config_data)) else None
|
||||
@@ -118,7 +120,6 @@ class App(EmbedChain):
|
||||
self.llm = llm or OpenAILlm()
|
||||
self._init_db()
|
||||
|
||||
logger.debug("4.1")
|
||||
# Session for the metadata db
|
||||
self.db_session = get_session()
|
||||
|
||||
@@ -126,7 +127,6 @@ class App(EmbedChain):
|
||||
if self.cache_config is not None:
|
||||
self._init_cache()
|
||||
|
||||
logger.debug("4.2")
|
||||
# Send anonymous telemetry
|
||||
self._telemetry_props = {"class": self.__class__.__name__}
|
||||
self.telemetry = AnonymousTelemetry(enabled=self.config.collect_metrics)
|
||||
@@ -337,7 +337,6 @@ class App(EmbedChain):
|
||||
:return: An instance of the App class.
|
||||
:rtype: App
|
||||
"""
|
||||
logger.debug("6")
|
||||
# Backward compatibility for yaml_path
|
||||
if yaml_path and not config_path:
|
||||
config_path = yaml_path
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import os
|
||||
from logging.config import fileConfig
|
||||
|
||||
from alembic import context
|
||||
from sqlalchemy import engine_from_config, pool
|
||||
@@ -10,11 +9,6 @@ from embedchain.core.db.models import Base
|
||||
# access to the values within the .ini file in use.
|
||||
config = context.config
|
||||
|
||||
# Interpret the config file for Python logging.
|
||||
# This line sets up loggers basically.
|
||||
if config.config_file_name is not None:
|
||||
fileConfig(config.config_file_name)
|
||||
|
||||
target_metadata = Base.metadata
|
||||
|
||||
# other values from the config, defined by the needs of env.py,
|
||||
|
||||
Reference in New Issue
Block a user