[Feature]: Add posthog anonymous telemetry and update docs (#867)
This commit is contained in:
@@ -24,7 +24,7 @@ Once you have obtained the key, you can use it like this:
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
@@ -52,7 +52,7 @@ To use Azure OpenAI embedding model, you have to set some of the azure openai re
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ["OPENAI_API_TYPE"] = "azure"
|
||||
os.environ["OPENAI_API_BASE"] = "https://xxx.openai.azure.com/"
|
||||
@@ -90,7 +90,7 @@ GPT4All supports generating high quality embeddings of arbitrary length document
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
@@ -119,7 +119,7 @@ Hugging Face supports generating embeddings of arbitrary length documents of tex
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
@@ -150,7 +150,7 @@ Embedchain supports Google's VertexAI embeddings model through a simple interfac
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load embedding model configuration from config.yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
|
||||
@@ -26,7 +26,7 @@ Once you have obtained the key, you can use it like this:
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
@@ -41,7 +41,7 @@ If you are looking to configure the different parameters of the LLM, you can do
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
@@ -71,7 +71,7 @@ To use Azure OpenAI model, you have to set some of the azure openai related envi
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ["OPENAI_API_TYPE"] = "azure"
|
||||
os.environ["OPENAI_API_BASE"] = "https://xxx.openai.azure.com/"
|
||||
@@ -110,7 +110,7 @@ To use anthropic's model, please set the `ANTHROPIC_API_KEY` which you find on t
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ["ANTHROPIC_API_KEY"] = "xxx"
|
||||
|
||||
@@ -147,7 +147,7 @@ Once you have the API key, you are all set to use it with Embedchain.
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ["COHERE_API_KEY"] = "xxx"
|
||||
|
||||
@@ -180,7 +180,7 @@ GPT4all is a free-to-use, locally running, privacy-aware chatbot. No GPU or inte
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
@@ -212,7 +212,7 @@ Once you have the key, load the app using the config yaml file:
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ["JINACHAT_API_KEY"] = "xxx"
|
||||
# load llm configuration from config.yaml file
|
||||
@@ -248,7 +248,7 @@ Once you have the token, load the app using the config yaml file:
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
|
||||
|
||||
@@ -278,7 +278,7 @@ Once you have the token, load the app using the config yaml file:
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ["REPLICATE_API_TOKEN"] = "xxx"
|
||||
|
||||
@@ -305,7 +305,7 @@ Setup Google Cloud Platform application credentials by following the instruction
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
|
||||
@@ -22,7 +22,7 @@ Utilizing a vector database alongside Embedchain is a seamless process. All you
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load chroma configuration from yaml file
|
||||
app = App.from_config(yaml_path="config1.yaml")
|
||||
@@ -61,7 +61,7 @@ pip install --upgrade 'embedchain[elasticsearch]'
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load elasticsearch configuration from yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
@@ -89,7 +89,7 @@ pip install --upgrade 'embedchain[opensearch]'
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load opensearch configuration from yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
@@ -125,7 +125,7 @@ Set the Zilliz environment variables `ZILLIZ_CLOUD_URI` and `ZILLIZ_CLOUD_TOKEN`
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
os.environ['ZILLIZ_CLOUD_URI'] = 'https://xxx.zillizcloud.com'
|
||||
os.environ['ZILLIZ_CLOUD_TOKEN'] = 'xxx'
|
||||
@@ -164,7 +164,7 @@ In order to use Pinecone as vector database, set the environment variables `PINE
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load pinecone configuration from yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
@@ -187,7 +187,7 @@ In order to use Qdrant as a vector database, set the environment variables `QDRA
|
||||
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load qdrant configuration from yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
@@ -207,7 +207,7 @@ In order to use Weaviate as a vector database, set the environment variables `WE
|
||||
|
||||
<CodeGroup>
|
||||
```python main.py
|
||||
from embedchain import App
|
||||
from embedchain import Pipeline as App
|
||||
|
||||
# load weaviate configuration from yaml file
|
||||
app = App.from_config(yaml_path="config.yaml")
|
||||
|
||||
Reference in New Issue
Block a user