PHASE 1 COMPLETE: mem0 + Supabase integration tested and working

 PHASE 1 ACHIEVEMENTS:
- Successfully migrated from Qdrant to self-hosted Supabase
- Fixed mem0 Supabase integration collection naming issues
- Resolved vector dimension mismatches (1536→768 for Ollama)
- All containers connected to localai docker network
- Comprehensive documentation updates completed

 TESTING COMPLETED:
- Database storage verification: Data properly stored in PostgreSQL
- Vector operations: 768-dimensional embeddings working perfectly
- Memory operations: Add, search, retrieve, delete all functional
- Multi-user support: User isolation verified
- LLM integration: Ollama qwen2.5:7b + nomic-embed-text operational
- Search functionality: Semantic search with relevance scores working

 INFRASTRUCTURE READY:
- Supabase PostgreSQL with pgvector:  OPERATIONAL
- Neo4j graph database:  READY (for Phase 2)
- Ollama LLM + embeddings:  WORKING
- mem0 v0.1.115:  FULLY FUNCTIONAL

PHASE 2 READY: Core memory system and API development can begin

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Docker Config Backup
2025-07-31 13:40:31 +02:00
parent 09451401cc
commit 7e3ba093c4
12 changed files with 1175 additions and 8 deletions

View File

@@ -0,0 +1,92 @@
#!/usr/bin/env python3
"""
Clean up all Supabase vecs tables and start fresh
"""
import psycopg2
import vecs
def cleanup_all_tables():
"""Clean up all tables in vecs schema"""
print("=" * 60)
print("SUPABASE VECS SCHEMA CLEANUP")
print("=" * 60)
try:
# Connect to database directly
conn = psycopg2.connect("postgresql://supabase_admin:CzkaYmRvc26Y@localhost:5435/postgres")
cur = conn.cursor()
print("🔍 Finding all tables in vecs schema...")
cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'vecs';")
tables = cur.fetchall()
table_names = [t[0] for t in tables]
print(f"Found tables: {table_names}")
if table_names:
print(f"\n🗑️ Dropping {len(table_names)} tables...")
for table_name in table_names:
try:
cur.execute(f'DROP TABLE IF EXISTS vecs."{table_name}" CASCADE;')
print(f" ✅ Dropped: {table_name}")
except Exception as e:
print(f" ❌ Failed to drop {table_name}: {e}")
# Commit the drops
conn.commit()
print("✅ All table drops committed")
else:
print(" No tables found in vecs schema")
# Verify cleanup
cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'vecs';")
remaining_tables = cur.fetchall()
print(f"\n📋 Remaining tables: {[t[0] for t in remaining_tables]}")
cur.close()
conn.close()
print("\n🧪 Testing fresh vecs client connection...")
connection_string = "postgresql://supabase_admin:CzkaYmRvc26Y@localhost:5435/postgres"
db = vecs.create_client(connection_string)
collections = db.list_collections()
print(f"Collections after cleanup: {[c.name for c in collections]}")
print("\n🎯 Testing fresh collection creation...")
test_collection = db.get_or_create_collection(name="test_fresh_start", dimension=1536)
print(f"✅ Successfully created: {test_collection.name} with dimension {test_collection.dimension}")
# Test basic operations
print("🧪 Testing basic vector operations...")
import numpy as np
# Insert test vector
test_vector = np.random.random(1536).tolist()
test_id = "test_vector_1"
test_metadata = {"content": "Fresh start test", "user_id": "test"}
test_collection.upsert([(test_id, test_vector, test_metadata)])
print("✅ Vector upserted successfully")
# Search test
results = test_collection.query(data=test_vector, limit=1, include_metadata=True)
print(f"✅ Search successful, found {len(results)} results")
if results:
print(f" Result: ID={results[0][0]}, Score={results[0][1]}")
# Clean up test collection
db.delete_collection("test_fresh_start")
print("✅ Test collection cleaned up")
print("\n" + "=" * 60)
print("🎉 CLEANUP SUCCESSFUL - VECS IS READY!")
print("=" * 60)
except Exception as e:
print(f"❌ Cleanup failed: {str(e)}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
cleanup_all_tables()