[chore]: Rename modules for better readability and maintainability (#587)
This commit is contained in:
184
embedchain/vectordb/elasticsearch.py
Normal file
184
embedchain/vectordb/elasticsearch.py
Normal file
@@ -0,0 +1,184 @@
|
||||
from typing import Dict, List, Optional, Set
|
||||
|
||||
try:
|
||||
from elasticsearch import Elasticsearch
|
||||
from elasticsearch.helpers import bulk
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Elasticsearch requires extra dependencies. Install with `pip install --upgrade embedchain[elasticsearch]`"
|
||||
) from None
|
||||
|
||||
from embedchain.config import ElasticsearchDBConfig
|
||||
from embedchain.helper.json_serializable import register_deserializable
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class ElasticsearchDB(BaseVectorDB):
|
||||
"""
|
||||
Elasticsearch as vector database
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[ElasticsearchDBConfig] = None,
|
||||
es_config: Optional[ElasticsearchDBConfig] = None, # Backwards compatibility
|
||||
):
|
||||
"""Elasticsearch as vector database.
|
||||
|
||||
:param config: Elasticsearch database config, defaults to None
|
||||
:type config: ElasticsearchDBConfig, optional
|
||||
:param es_config: `es_config` is supported as an alias for `config` (for backwards compatibility),
|
||||
defaults to None
|
||||
:type es_config: ElasticsearchDBConfig, optional
|
||||
:raises ValueError: No config provided
|
||||
"""
|
||||
if config is None and es_config is None:
|
||||
raise ValueError("ElasticsearchDBConfig is required")
|
||||
self.config = config or es_config
|
||||
self.client = Elasticsearch(es_config.ES_URL, **es_config.ES_EXTRA_PARAMS)
|
||||
|
||||
# Call parent init here because embedder is needed
|
||||
super().__init__(config=self.config)
|
||||
|
||||
def _initialize(self):
|
||||
"""
|
||||
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
|
||||
"""
|
||||
index_settings = {
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"text": {"type": "text"},
|
||||
"embeddings": {"type": "dense_vector", "index": False, "dims": self.embedder.vector_dimension},
|
||||
}
|
||||
}
|
||||
}
|
||||
es_index = self._get_index()
|
||||
if not self.client.indices.exists(index=es_index):
|
||||
# create index if not exist
|
||||
print("Creating index", es_index, index_settings)
|
||||
self.client.indices.create(index=es_index, body=index_settings)
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Called during initialization"""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Note: nothing to return here. Discuss later"""
|
||||
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> Set[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
|
||||
:param ids: _list of doc ids to check for existance
|
||||
:type ids: List[str]
|
||||
:param where: to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: ids
|
||||
:rtype: Set[str]
|
||||
"""
|
||||
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
|
||||
if "app_id" in where:
|
||||
app_id = where["app_id"]
|
||||
query["bool"]["must"].append({"term": {"metadata.app_id": app_id}})
|
||||
response = self.client.search(index=self.es_index, query=query, _source=False)
|
||||
docs = response["hits"]["hits"]
|
||||
ids = [doc["_id"] for doc in docs]
|
||||
return set(ids)
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
|
||||
"""add data in vector database
|
||||
|
||||
:param documents: list of texts to add
|
||||
:type documents: List[str]
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:type metadatas: List[object]
|
||||
:param ids: ids of docs
|
||||
:type ids: List[str]
|
||||
"""
|
||||
|
||||
docs = []
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings):
|
||||
docs.append(
|
||||
{
|
||||
"_index": self._get_index(),
|
||||
"_id": id,
|
||||
"_source": {"text": text, "metadata": metadata, "embeddings": embeddings},
|
||||
}
|
||||
)
|
||||
bulk(self.client, docs)
|
||||
self.client.indices.refresh(index=self._get_index())
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:type n_results: int
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
"""
|
||||
input_query_vector = self.embedder.embedding_fn(input_query)
|
||||
query_vector = input_query_vector[0]
|
||||
query = {
|
||||
"script_score": {
|
||||
"query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.input_query_vector, 'embeddings') + 1.0",
|
||||
"params": {"input_query_vector": query_vector},
|
||||
},
|
||||
}
|
||||
}
|
||||
if "app_id" in where:
|
||||
app_id = where["app_id"]
|
||||
query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
|
||||
_source = ["text"]
|
||||
response = self.client.search(index=self._get_index(), query=query, _source=_source, size=n_results)
|
||||
docs = response["hits"]["hits"]
|
||||
contents = [doc["_source"]["text"] for doc in docs]
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
self.config.collection_name = name
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
query = {"match_all": {}}
|
||||
response = self.client.count(index=self._get_index(), query=query)
|
||||
doc_count = response["count"]
|
||||
return doc_count
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
# Delete all data from the database
|
||||
if self.client.indices.exists(index=self._get_index()):
|
||||
# delete index in Es
|
||||
self.client.indices.delete(index=self._get_index())
|
||||
|
||||
def _get_index(self) -> str:
|
||||
"""Get the Elasticsearch index for a collection
|
||||
|
||||
:return: Elasticsearch index
|
||||
:rtype: str
|
||||
"""
|
||||
# NOTE: The method is preferred to an attribute, because if collection name changes,
|
||||
# it's always up-to-date.
|
||||
return f"{self.config.collection_name}_{self.embedder.vector_dimension}"
|
||||
Reference in New Issue
Block a user