Fix CI issues related to missing dependency (#3096)

This commit is contained in:
Deshraj Yadav
2025-07-03 18:52:50 -07:00
committed by GitHub
parent 2c496e6376
commit 7484eed4b2
32 changed files with 6150 additions and 828 deletions

View File

@@ -2,10 +2,9 @@ from unittest.mock import Mock, patch, PropertyMock
import pytest
from mem0.vector_stores.baidu import BaiduDB, OutputData
from pymochow.model.enum import MetricType, TableState, ServerErrCode
from pymochow.model.schema import Field, Schema, VectorIndex, FilteringIndex, HNSWParams, AutoBuildRowCountIncrement
from pymochow.model.table import Partition, Row, VectorSearchConfig, VectorTopkSearchRequest, FloatVector, Table
from mem0.vector_stores.baidu import BaiduDB
from pymochow.model.enum import TableState, ServerErrCode
from pymochow.model.table import VectorSearchConfig, VectorTopkSearchRequest, FloatVector, Table
from pymochow.exception import ServerError

View File

@@ -1,7 +1,7 @@
import pytest
from unittest.mock import MagicMock, patch
from mem0.vector_stores.mongodb import MongoDB
from pymongo.operations import SearchIndexModel
@pytest.fixture
@patch("mem0.vector_stores.mongodb.MongoClient")
@@ -19,10 +19,11 @@ def mongo_vector_fixture(mock_mongo_client):
db_name="test_db",
collection_name="test_collection",
embedding_model_dims=1536,
mongo_uri="mongodb://username:password@localhost:27017"
mongo_uri="mongodb://username:password@localhost:27017",
)
return mongo_vector, mock_collection, mock_db
def test_initalize_create_col(mongo_vector_fixture):
mongo_vector, mock_collection, mock_db = mongo_vector_fixture
assert mongo_vector.collection_name == "test_collection"
@@ -49,12 +50,13 @@ def test_initalize_create_col(mongo_vector_fixture):
"dimensions": 1536,
"similarity": "cosine",
}
}
},
}
}
},
}
assert mongo_vector.collection == mock_collection
def test_insert(mongo_vector_fixture):
mongo_vector, mock_collection, _ = mongo_vector_fixture
vectors = [[0.1] * 1536, [0.2] * 1536]
@@ -62,12 +64,13 @@ def test_insert(mongo_vector_fixture):
ids = ["id1", "id2"]
mongo_vector.insert(vectors, payloads, ids)
expected_records=[
expected_records = [
({"_id": ids[0], "embedding": vectors[0], "payload": payloads[0]}),
({"_id": ids[1], "embedding": vectors[1], "payload": payloads[1]})
({"_id": ids[1], "embedding": vectors[1], "payload": payloads[1]}),
]
mock_collection.insert_many.assert_called_once_with(expected_records)
def test_search(mongo_vector_fixture):
mongo_vector, mock_collection, _ = mongo_vector_fixture
query_vector = [0.1] * 1536
@@ -79,25 +82,28 @@ def test_search(mongo_vector_fixture):
results = mongo_vector.search("query_str", query_vector, limit=2)
mock_collection.list_search_indexes.assert_called_with(name="test_collection_vector_index")
mock_collection.aggregate.assert_called_once_with([
{
"$vectorSearch": {
"index": "test_collection_vector_index",
"limit": 2,
"numCandidates": 2,
"queryVector": query_vector,
"path": "embedding",
mock_collection.aggregate.assert_called_once_with(
[
{
"$vectorSearch": {
"index": "test_collection_vector_index",
"limit": 2,
"numCandidates": 2,
"queryVector": query_vector,
"path": "embedding",
},
},
},
{"$set": {"score": {"$meta": "vectorSearchScore"}}},
{"$project": {"embedding": 0}},
])
{"$set": {"score": {"$meta": "vectorSearchScore"}}},
{"$project": {"embedding": 0}},
]
)
assert len(results) == 2
assert results[0].id == "id1"
assert results[0].score == 0.9
assert results[1].id == "id2"
assert results[1].score == 0.8
def test_delete(mongo_vector_fixture):
mongo_vector, mock_collection, _ = mongo_vector_fixture
mock_delete_result = MagicMock()
@@ -107,6 +113,7 @@ def test_delete(mongo_vector_fixture):
mongo_vector.delete("id1")
mock_collection.delete_one.assert_called_with({"_id": "id1"})
def test_update(mongo_vector_fixture):
mongo_vector, mock_collection, _ = mongo_vector_fixture
mock_update_result = MagicMock()
@@ -122,6 +129,7 @@ def test_update(mongo_vector_fixture):
{"$set": {"embedding": vectorValue, "payload": payloadValue}},
)
def test_get(mongo_vector_fixture):
mongo_vector, mock_collection, _ = mongo_vector_fixture
mock_collection.find_one.return_value = {"_id": "id1", "payload": {"key": "value1"}}
@@ -131,6 +139,7 @@ def test_get(mongo_vector_fixture):
assert result.id == "id1"
assert result.payload == {"key": "value1"}
def test_list_cols(mongo_vector_fixture):
mongo_vector, _, mock_db = mongo_vector_fixture
mock_db.list_collection_names.return_value = ["col1", "col2"]
@@ -138,12 +147,14 @@ def test_list_cols(mongo_vector_fixture):
collections = mongo_vector.list_cols()
assert collections == ["col1", "col2"]
def test_delete_col(mongo_vector_fixture):
mongo_vector, mock_collection, _ = mongo_vector_fixture
mongo_vector.delete_col()
mock_collection.drop.assert_called_once()
def test_col_info(mongo_vector_fixture):
mongo_vector, _, mock_db = mongo_vector_fixture
mock_db.command.return_value = {"count": 10, "size": 1024}
@@ -154,6 +165,7 @@ def test_col_info(mongo_vector_fixture):
assert info["count"] == 10
assert info["size"] == 1024
def test_list(mongo_vector_fixture):
mongo_vector, mock_collection, _ = mongo_vector_fixture
mock_cursor = MagicMock()

View File

@@ -88,7 +88,7 @@ def test_get_vector_found(pinecone_db):
# or a list of dictionaries, not a dictionary with an 'id' field
# Create a mock Vector object
from pinecone.data.dataclasses.vector import Vector
from pinecone import Vector
mock_vector = Vector(id="id1", values=[0.1] * 128, metadata={"name": "vector1"})