HNSW support for pgvector (#2139)

This commit is contained in:
Dev Khant
2025-01-11 23:46:42 +05:30
committed by GitHub
parent 6851fac327
commit 7397279872
3 changed files with 17 additions and 5 deletions

View File

@@ -38,3 +38,4 @@ Here's the parameters available for configuring pgvector:
| `host` | The host where the Postgres server is running | `None` |
| `port` | The port where the Postgres server is running | `None` |
| `diskann` | Whether to use diskann for vector similarity search (requires pgvectorscale) | `True` |
| `hnsw` | Whether to use hnsw for vector similarity search | `False` |

View File

@@ -12,6 +12,7 @@ class PGVectorConfig(BaseModel):
host: Optional[str] = Field(None, description="Database host. Default is localhost")
port: Optional[int] = Field(None, description="Database port. Default is 1536")
diskann: Optional[bool] = Field(True, description="Use diskann for approximate nearest neighbors search")
hnsw: Optional[bool] = Field(False, description="Use hnsw for faster search")
@model_validator(mode="before")
def check_auth_and_connection(cls, values):

View File

@@ -32,6 +32,7 @@ class PGVector(VectorStoreBase):
host,
port,
diskann,
hnsw,
):
"""
Initialize the PGVector database.
@@ -45,9 +46,11 @@ class PGVector(VectorStoreBase):
host (str, optional): Database host
port (int, optional): Database port
diskann (bool, optional): Use DiskANN for faster search
hnsw (bool, optional): Use HNSW for faster search
"""
self.collection_name = collection_name
self.use_diskann = diskann
self.use_hnsw = hnsw
self.conn = psycopg2.connect(dbname=dbname, user=user, password=password, host=host, port=port)
self.cur = self.conn.cursor()
@@ -59,11 +62,10 @@ class PGVector(VectorStoreBase):
def create_col(self, embedding_model_dims):
"""
Create a new collection (table in PostgreSQL).
Will also initialize DiskANN index if the extension is installed.
Will also initialize vector search index if specified.
Args:
name (str): Name of the collection.
embedding_model_dims (int, optional): Dimension of the embedding vector.
embedding_model_dims (int): Dimension of the embedding vector.
"""
self.cur.execute(
f"""
@@ -82,11 +84,19 @@ class PGVector(VectorStoreBase):
# Create DiskANN index if extension is installed for faster search
self.cur.execute(
f"""
CREATE INDEX IF NOT EXISTS {self.collection_name}_vector_idx
CREATE INDEX IF NOT EXISTS {self.collection_name}_diskann_idx
ON {self.collection_name}
USING diskann (vector);
"""
)
elif self.use_hnsw:
self.cur.execute(
f"""
CREATE INDEX IF NOT EXISTS {self.collection_name}_hnsw_idx
ON {self.collection_name}
USING hnsw (vector vector_cosine_ops)
"""
)
self.conn.commit()