Code formatting (#1986)

This commit is contained in:
Dev Khant
2024-10-29 11:32:07 +05:30
committed by GitHub
parent dca74a1ec0
commit 605558da9d
13 changed files with 119 additions and 149 deletions

View File

@@ -33,11 +33,7 @@ def test_embed_text(mock_openai_client):
@pytest.mark.parametrize(
"default_headers, expected_header",
[
(None, None),
({"Test": "test_value"}, "test_value"),
({}, None)
],
[(None, None), ({"Test": "test_value"}, "test_value"), ({}, None)],
)
def test_embed_text_with_default_headers(default_headers, expected_header):
config = BaseEmbedderConfig(
@@ -47,8 +43,8 @@ def test_embed_text_with_default_headers(default_headers, expected_header):
"api_version": "test_version",
"azure_endpoint": "test_endpoint",
"azuer_deployment": "test_deployment",
"default_headers": default_headers
}
"default_headers": default_headers,
},
)
embedder = AzureOpenAIEmbedding(config)
assert embedder.client.api_key == "test"

View File

@@ -12,17 +12,11 @@ def mock_genai():
@pytest.fixture
def config():
return BaseEmbedderConfig(
api_key="dummy_api_key",
model="test_model"
)
return BaseEmbedderConfig(api_key="dummy_api_key", model="test_model")
def test_embed_query(mock_genai, config):
mock_embedding_response = {
'embedding': [0.1, 0.2, 0.3, 0.4]
}
mock_embedding_response = {"embedding": [0.1, 0.2, 0.3, 0.4]}
mock_genai.return_value = mock_embedding_response
embedder = GoogleGenAIEmbedding(config)
@@ -31,7 +25,4 @@ def test_embed_query(mock_genai, config):
embedding = embedder.embed(text)
assert embedding == [0.1, 0.2, 0.3, 0.4]
mock_genai.assert_called_once_with(
model="test_model",
content="Hello, world!"
)
mock_genai.assert_called_once_with(model="test_model", content="Hello, world!")

View File

@@ -1,7 +1,6 @@
import pytest
from unittest.mock import Mock, patch
from mem0.embeddings.vertexai import VertexAIEmbedding
from mem0.configs.embeddings.base import BaseEmbedderConfig
@pytest.fixture
@@ -35,15 +34,11 @@ def test_embed_default_model(mock_text_embedding_model, mock_os_environ, mock_co
embedder = VertexAIEmbedding(config)
mock_embedding = Mock(values=[0.1, 0.2, 0.3])
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [
mock_embedding
]
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [mock_embedding]
result = embedder.embed("Hello world")
embedder.embed("Hello world")
mock_text_embedding_model.from_pretrained.assert_called_once_with(
"text-embedding-004"
)
mock_text_embedding_model.from_pretrained.assert_called_once_with("text-embedding-004")
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_once_with(
texts=["Hello world"], output_dimensionality=256
)
@@ -60,15 +55,11 @@ def test_embed_custom_model(mock_text_embedding_model, mock_os_environ, mock_con
embedder = VertexAIEmbedding(config)
mock_embedding = Mock(values=[0.4, 0.5, 0.6])
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [
mock_embedding
]
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [mock_embedding]
result = embedder.embed("Test embedding")
mock_text_embedding_model.from_pretrained.assert_called_with(
"custom-embedding-model"
)
mock_text_embedding_model.from_pretrained.assert_called_with("custom-embedding-model")
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_once_with(
texts=["Test embedding"], output_dimensionality=512
)
@@ -93,16 +84,12 @@ def test_missing_credentials(mock_os, mock_text_embedding_model, mock_config):
config = mock_config()
with pytest.raises(
ValueError, match="Google application credentials JSON is not provided"
):
with pytest.raises(ValueError, match="Google application credentials JSON is not provided"):
VertexAIEmbedding(config)
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
def test_embed_with_different_dimensions(
mock_text_embedding_model, mock_os_environ, mock_config
):
def test_embed_with_different_dimensions(mock_text_embedding_model, mock_os_environ, mock_config):
mock_config.vertex_credentials_json = "/path/to/credentials.json"
mock_config.return_value.embedding_dims = 1024
@@ -110,9 +97,7 @@ def test_embed_with_different_dimensions(
embedder = VertexAIEmbedding(config)
mock_embedding = Mock(values=[0.1] * 1024)
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [
mock_embedding
]
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [mock_embedding]
result = embedder.embed("Large embedding test")