add: add embedchainjs github repo to readme (#123)
This commit is contained in:
committed by
GitHub
parent
5c19da74e5
commit
5fa2f5c5a2
2
.gitignore
vendored
2
.gitignore
vendored
@@ -165,3 +165,5 @@ cython_debug/
|
||||
|
||||
# Database
|
||||
db
|
||||
|
||||
.vscode
|
||||
@@ -1,9 +1,9 @@
|
||||
# embedchain
|
||||
|
||||
[](https://discord.gg/nhvCbCtKV)
|
||||

|
||||
[](https://pypi.org/project/embedchain/)
|
||||
|
||||
embedchain is a framework to easily create LLM powered bots over any dataset.
|
||||
embedchain is a framework to easily create LLM powered bots over any dataset. If you want a javascript version, check out [embedchain-js](https://github.com/embedchain/embedchainjs)
|
||||
|
||||
It abstracts the entire process of loading a dataset, chunking it, creating embeddings and then storing in a vector database.
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ from embedchain.utils import clean_string
|
||||
|
||||
|
||||
class PdfFileLoader:
|
||||
|
||||
|
||||
def load_data(self, url):
|
||||
loader = PyPDFLoader(url)
|
||||
output = []
|
||||
@@ -20,4 +20,4 @@ class PdfFileLoader:
|
||||
"content": content,
|
||||
"meta_data": meta_data,
|
||||
})
|
||||
return output
|
||||
return output
|
||||
|
||||
Reference in New Issue
Block a user