Feature (OpenMemory): Add support for LLM and Embedding Providers in OpenMemory (#2794)

This commit is contained in:
Saket Aryan
2025-05-25 13:31:23 +05:30
committed by GitHub
parent b339cab3c1
commit 5c6fbcaab0
20 changed files with 1586 additions and 123 deletions

View File

@@ -1,3 +1,20 @@
"""
MCP Server for OpenMemory with resilient memory client handling.
This module implements an MCP (Model Context Protocol) server that provides
memory operations for OpenMemory. The memory client is initialized lazily
to prevent server crashes when external dependencies (like Ollama) are
unavailable. If the memory client cannot be initialized, the server will
continue running with limited functionality and appropriate error messages.
Key features:
- Lazy memory client initialization
- Graceful error handling for unavailable dependencies
- Fallback to database-only mode when vector store is unavailable
- Proper logging for debugging connection issues
- Environment variable parsing for API keys
"""
import logging
import json
from mcp.server.fastmcp import FastMCP
@@ -19,14 +36,17 @@ from qdrant_client import models as qdrant_models
# Load environment variables
load_dotenv()
# Initialize MCP and memory client
# Initialize MCP
mcp = FastMCP("mem0-mcp-server")
# Check if OpenAI API key is set
if not os.getenv("OPENAI_API_KEY"):
raise Exception("OPENAI_API_KEY is not set in .env file")
memory_client = get_memory_client()
# Don't initialize memory client at import time - do it lazily when needed
def get_memory_client_safe():
"""Get memory client with error handling. Returns None if client cannot be initialized."""
try:
return get_memory_client()
except Exception as e:
logging.warning(f"Failed to get memory client: {e}")
return None
# Context variables for user_id and client_name
user_id_var: contextvars.ContextVar[str] = contextvars.ContextVar("user_id")
@@ -48,6 +68,11 @@ async def add_memories(text: str) -> str:
if not client_name:
return "Error: client_name not provided"
# Get memory client safely
memory_client = get_memory_client_safe()
if not memory_client:
return "Error: Memory system is currently unavailable. Please try again later."
try:
db = SessionLocal()
try:
@@ -113,6 +138,7 @@ async def add_memories(text: str) -> str:
finally:
db.close()
except Exception as e:
logging.exception(f"Error adding to memory: {e}")
return f"Error adding to memory: {e}"
@@ -124,6 +150,12 @@ async def search_memory(query: str) -> str:
return "Error: user_id not provided"
if not client_name:
return "Error: client_name not provided"
# Get memory client safely
memory_client = get_memory_client_safe()
if not memory_client:
return "Error: Memory system is currently unavailable. Please try again later."
try:
db = SessionLocal()
try:
@@ -216,6 +248,12 @@ async def list_memories() -> str:
return "Error: user_id not provided"
if not client_name:
return "Error: client_name not provided"
# Get memory client safely
memory_client = get_memory_client_safe()
if not memory_client:
return "Error: Memory system is currently unavailable. Please try again later."
try:
db = SessionLocal()
try:
@@ -267,6 +305,7 @@ async def list_memories() -> str:
finally:
db.close()
except Exception as e:
logging.exception(f"Error getting memories: {e}")
return f"Error getting memories: {e}"
@@ -278,6 +317,12 @@ async def delete_all_memories() -> str:
return "Error: user_id not provided"
if not client_name:
return "Error: client_name not provided"
# Get memory client safely
memory_client = get_memory_client_safe()
if not memory_client:
return "Error: Memory system is currently unavailable. Please try again later."
try:
db = SessionLocal()
try:
@@ -289,7 +334,10 @@ async def delete_all_memories() -> str:
# delete the accessible memories only
for memory_id in accessible_memory_ids:
memory_client.delete(memory_id)
try:
memory_client.delete(memory_id)
except Exception as delete_error:
logging.warning(f"Failed to delete memory {memory_id} from vector store: {delete_error}")
# Update each memory's state and create history entries
now = datetime.datetime.now(datetime.UTC)
@@ -322,6 +370,7 @@ async def delete_all_memories() -> str:
finally:
db.close()
except Exception as e:
logging.exception(f"Error deleting memories: {e}")
return f"Error deleting memories: {e}"

View File

@@ -56,6 +56,17 @@ class App(Base):
memories = relationship("Memory", back_populates="app")
class Config(Base):
__tablename__ = "configs"
id = Column(UUID, primary_key=True, default=lambda: uuid.uuid4())
key = Column(String, unique=True, nullable=False, index=True)
value = Column(JSON, nullable=False)
created_at = Column(DateTime, default=get_current_utc_time)
updated_at = Column(DateTime,
default=get_current_utc_time,
onupdate=get_current_utc_time)
class Memory(Base):
__tablename__ = "memories"
id = Column(UUID, primary_key=True, default=lambda: uuid.uuid4())

View File

@@ -1,5 +1,6 @@
from .memories import router as memories_router
from .apps import router as apps_router
from .stats import router as stats_router
from .config import router as config_router
__all__ = ["memories_router", "apps_router", "stats_router"]
__all__ = ["memories_router", "apps_router", "stats_router", "config_router"]

View File

@@ -0,0 +1,240 @@
import os
import json
from typing import Dict, Any, Optional
from fastapi import APIRouter, HTTPException, Depends
from pydantic import BaseModel, Field
from sqlalchemy.orm import Session
from app.database import get_db
from app.models import Config as ConfigModel
from app.utils.memory import reset_memory_client
router = APIRouter(prefix="/api/v1/config", tags=["config"])
class LLMConfig(BaseModel):
model: str = Field(..., description="LLM model name")
temperature: float = Field(..., description="Temperature setting for the model")
max_tokens: int = Field(..., description="Maximum tokens to generate")
api_key: Optional[str] = Field(None, description="API key or 'env:API_KEY' to use environment variable")
ollama_base_url: Optional[str] = Field(None, description="Base URL for Ollama server (e.g., http://host.docker.internal:11434)")
class LLMProvider(BaseModel):
provider: str = Field(..., description="LLM provider name")
config: LLMConfig
class EmbedderConfig(BaseModel):
model: str = Field(..., description="Embedder model name")
api_key: Optional[str] = Field(None, description="API key or 'env:API_KEY' to use environment variable")
ollama_base_url: Optional[str] = Field(None, description="Base URL for Ollama server (e.g., http://host.docker.internal:11434)")
class EmbedderProvider(BaseModel):
provider: str = Field(..., description="Embedder provider name")
config: EmbedderConfig
class OpenMemoryConfig(BaseModel):
custom_instructions: Optional[str] = Field(None, description="Custom instructions for memory management and fact extraction")
class Mem0Config(BaseModel):
llm: Optional[LLMProvider] = None
embedder: Optional[EmbedderProvider] = None
class ConfigSchema(BaseModel):
openmemory: Optional[OpenMemoryConfig] = None
mem0: Mem0Config
def get_default_configuration():
"""Get the default configuration with sensible defaults for LLM and embedder."""
return {
"openmemory": {
"custom_instructions": None
},
"mem0": {
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4o-mini",
"temperature": 0.1,
"max_tokens": 2000,
"api_key": "env:OPENAI_API_KEY"
}
},
"embedder": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
"api_key": "env:OPENAI_API_KEY"
}
}
}
}
def get_config_from_db(db: Session, key: str = "main"):
"""Get configuration from database."""
config = db.query(ConfigModel).filter(ConfigModel.key == key).first()
if not config:
# Create default config with proper provider configurations
default_config = get_default_configuration()
db_config = ConfigModel(key=key, value=default_config)
db.add(db_config)
db.commit()
db.refresh(db_config)
return default_config
# Ensure the config has all required sections with defaults
config_value = config.value
default_config = get_default_configuration()
# Merge with defaults to ensure all required fields exist
if "openmemory" not in config_value:
config_value["openmemory"] = default_config["openmemory"]
if "mem0" not in config_value:
config_value["mem0"] = default_config["mem0"]
else:
# Ensure LLM config exists with defaults
if "llm" not in config_value["mem0"] or config_value["mem0"]["llm"] is None:
config_value["mem0"]["llm"] = default_config["mem0"]["llm"]
# Ensure embedder config exists with defaults
if "embedder" not in config_value["mem0"] or config_value["mem0"]["embedder"] is None:
config_value["mem0"]["embedder"] = default_config["mem0"]["embedder"]
# Save the updated config back to database if it was modified
if config_value != config.value:
config.value = config_value
db.commit()
db.refresh(config)
return config_value
def save_config_to_db(db: Session, config: Dict[str, Any], key: str = "main"):
"""Save configuration to database."""
db_config = db.query(ConfigModel).filter(ConfigModel.key == key).first()
if db_config:
db_config.value = config
db_config.updated_at = None # Will trigger the onupdate to set current time
else:
db_config = ConfigModel(key=key, value=config)
db.add(db_config)
db.commit()
db.refresh(db_config)
return db_config.value
@router.get("/", response_model=ConfigSchema)
async def get_configuration(db: Session = Depends(get_db)):
"""Get the current configuration."""
config = get_config_from_db(db)
return config
@router.put("/", response_model=ConfigSchema)
async def update_configuration(config: ConfigSchema, db: Session = Depends(get_db)):
"""Update the configuration."""
current_config = get_config_from_db(db)
# Convert to dict for processing
updated_config = current_config.copy()
# Update openmemory settings if provided
if config.openmemory is not None:
if "openmemory" not in updated_config:
updated_config["openmemory"] = {}
updated_config["openmemory"].update(config.openmemory.dict(exclude_none=True))
# Update mem0 settings
updated_config["mem0"] = config.mem0.dict(exclude_none=True)
# Save the configuration to database
save_config_to_db(db, updated_config)
reset_memory_client()
return updated_config
@router.post("/reset", response_model=ConfigSchema)
async def reset_configuration(db: Session = Depends(get_db)):
"""Reset the configuration to default values."""
try:
# Get the default configuration with proper provider setups
default_config = get_default_configuration()
# Save it as the current configuration in the database
save_config_to_db(db, default_config)
reset_memory_client()
return default_config
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Failed to reset configuration: {str(e)}"
)
@router.get("/mem0/llm", response_model=LLMProvider)
async def get_llm_configuration(db: Session = Depends(get_db)):
"""Get only the LLM configuration."""
config = get_config_from_db(db)
llm_config = config.get("mem0", {}).get("llm", {})
return llm_config
@router.put("/mem0/llm", response_model=LLMProvider)
async def update_llm_configuration(llm_config: LLMProvider, db: Session = Depends(get_db)):
"""Update only the LLM configuration."""
current_config = get_config_from_db(db)
# Ensure mem0 key exists
if "mem0" not in current_config:
current_config["mem0"] = {}
# Update the LLM configuration
current_config["mem0"]["llm"] = llm_config.dict(exclude_none=True)
# Save the configuration to database
save_config_to_db(db, current_config)
reset_memory_client()
return current_config["mem0"]["llm"]
@router.get("/mem0/embedder", response_model=EmbedderProvider)
async def get_embedder_configuration(db: Session = Depends(get_db)):
"""Get only the Embedder configuration."""
config = get_config_from_db(db)
embedder_config = config.get("mem0", {}).get("embedder", {})
return embedder_config
@router.put("/mem0/embedder", response_model=EmbedderProvider)
async def update_embedder_configuration(embedder_config: EmbedderProvider, db: Session = Depends(get_db)):
"""Update only the Embedder configuration."""
current_config = get_config_from_db(db)
# Ensure mem0 key exists
if "mem0" not in current_config:
current_config["mem0"] = {}
# Update the Embedder configuration
current_config["mem0"]["embedder"] = embedder_config.dict(exclude_none=True)
# Save the configuration to database
save_config_to_db(db, current_config)
reset_memory_client()
return current_config["mem0"]["embedder"]
@router.get("/openmemory", response_model=OpenMemoryConfig)
async def get_openmemory_configuration(db: Session = Depends(get_db)):
"""Get only the OpenMemory configuration."""
config = get_config_from_db(db)
openmemory_config = config.get("openmemory", {})
return openmemory_config
@router.put("/openmemory", response_model=OpenMemoryConfig)
async def update_openmemory_configuration(openmemory_config: OpenMemoryConfig, db: Session = Depends(get_db)):
"""Update only the OpenMemory configuration."""
current_config = get_config_from_db(db)
# Ensure openmemory key exists
if "openmemory" not in current_config:
current_config["openmemory"] = {}
# Update the OpenMemory configuration
current_config["openmemory"].update(openmemory_config.dict(exclude_none=True))
# Save the configuration to database
save_config_to_db(db, current_config)
reset_memory_client()
return current_config["openmemory"]

View File

@@ -2,6 +2,7 @@ from datetime import datetime, UTC
from typing import List, Optional, Set
from uuid import UUID, uuid4
import logging
import os
from fastapi import APIRouter, Depends, HTTPException, Query
from sqlalchemy.orm import Session, joinedload
from fastapi_pagination import Page, Params
@@ -13,13 +14,11 @@ from app.utils.memory import get_memory_client
from app.database import get_db
from app.models import (
Memory, MemoryState, MemoryAccessLog, App,
MemoryStatusHistory, User, Category, AccessControl
MemoryStatusHistory, User, Category, AccessControl, Config as ConfigModel
)
from app.schemas import MemoryResponse, PaginatedMemoryResponse
from app.utils.permissions import check_memory_access_permissions
memory_client = get_memory_client()
router = APIRouter(prefix="/api/v1/memories", tags=["memories"])
@@ -227,100 +226,79 @@ async def create_memory(
# Log what we're about to do
logging.info(f"Creating memory for user_id: {request.user_id} with app: {request.app}")
# Save to Qdrant via memory_client
qdrant_response = memory_client.add(
request.text,
user_id=request.user_id, # Use string user_id to match search
metadata={
"source_app": "openmemory",
"mcp_client": request.app,
}
)
# Log the response for debugging
logging.info(f"Qdrant response: {qdrant_response}")
# Process Qdrant response
if isinstance(qdrant_response, dict) and 'results' in qdrant_response:
for result in qdrant_response['results']:
if result['event'] == 'ADD':
# Get the Qdrant-generated ID
memory_id = UUID(result['id'])
# Check if memory already exists
existing_memory = db.query(Memory).filter(Memory.id == memory_id).first()
if existing_memory:
# Update existing memory
existing_memory.state = MemoryState.active
existing_memory.content = result['memory']
memory = existing_memory
else:
# Create memory with the EXACT SAME ID from Qdrant
memory = Memory(
id=memory_id, # Use the same ID that Qdrant generated
user_id=user.id,
app_id=app_obj.id,
content=result['memory'],
metadata_=request.metadata,
state=MemoryState.active
)
db.add(memory)
# Create history entry
history = MemoryStatusHistory(
memory_id=memory_id,
changed_by=user.id,
old_state=MemoryState.deleted if existing_memory else MemoryState.deleted,
new_state=MemoryState.active
)
db.add(history)
db.commit()
db.refresh(memory)
return memory
# Fallback to traditional DB-only approach if Qdrant integration fails
# Generate a random UUID for the memory
memory_id = uuid4()
memory = Memory(
id=memory_id,
user_id=user.id,
app_id=app_obj.id,
content=request.text,
metadata_=request.metadata
)
db.add(memory)
# Create history entry
history = MemoryStatusHistory(
memory_id=memory_id,
changed_by=user.id,
old_state=MemoryState.deleted,
new_state=MemoryState.active
)
db.add(history)
db.commit()
db.refresh(memory)
# Attempt to add to Qdrant with the same ID we just created
# Try to get memory client safely
try:
# Try to add with our specific ID
memory_client.add(
memory_client = get_memory_client()
if not memory_client:
raise Exception("Memory client is not available")
except Exception as client_error:
logging.warning(f"Memory client unavailable: {client_error}. Creating memory in database only.")
# Return a json response with the error
return {
"error": str(client_error)
}
# Try to save to Qdrant via memory_client
try:
qdrant_response = memory_client.add(
request.text,
memory_id=str(memory_id), # Specify the ID
user_id=request.user_id,
user_id=request.user_id, # Use string user_id to match search
metadata={
"source_app": "openmemory",
"mcp_client": request.app,
}
)
except Exception as e:
logging.error(f"Failed to add to Qdrant in fallback path: {e}")
# Continue anyway, the DB record is created
return memory
# Log the response for debugging
logging.info(f"Qdrant response: {qdrant_response}")
# Process Qdrant response
if isinstance(qdrant_response, dict) and 'results' in qdrant_response:
for result in qdrant_response['results']:
if result['event'] == 'ADD':
# Get the Qdrant-generated ID
memory_id = UUID(result['id'])
# Check if memory already exists
existing_memory = db.query(Memory).filter(Memory.id == memory_id).first()
if existing_memory:
# Update existing memory
existing_memory.state = MemoryState.active
existing_memory.content = result['memory']
memory = existing_memory
else:
# Create memory with the EXACT SAME ID from Qdrant
memory = Memory(
id=memory_id, # Use the same ID that Qdrant generated
user_id=user.id,
app_id=app_obj.id,
content=result['memory'],
metadata_=request.metadata,
state=MemoryState.active
)
db.add(memory)
# Create history entry
history = MemoryStatusHistory(
memory_id=memory_id,
changed_by=user.id,
old_state=MemoryState.deleted if existing_memory else MemoryState.deleted,
new_state=MemoryState.active
)
db.add(history)
db.commit()
db.refresh(memory)
return memory
except Exception as qdrant_error:
logging.warning(f"Qdrant operation failed: {qdrant_error}.")
# Return a json response with the error
return {
"error": str(qdrant_error)
}
# Get memory by ID

View File

@@ -1,9 +1,193 @@
"""
Memory client utilities for OpenMemory.
This module provides functionality to initialize and manage the Mem0 memory client
with automatic configuration management and Docker environment support.
Docker Ollama Configuration:
When running inside a Docker container and using Ollama as the LLM or embedder provider,
the system automatically detects the Docker environment and adjusts localhost URLs
to properly reach the host machine where Ollama is running.
Supported Docker host resolution (in order of preference):
1. OLLAMA_HOST environment variable (if set)
2. host.docker.internal (Docker Desktop for Mac/Windows)
3. Docker bridge gateway IP (typically 172.17.0.1 on Linux)
4. Fallback to 172.17.0.1
Example configuration that will be automatically adjusted:
{
"llm": {
"provider": "ollama",
"config": {
"model": "llama3.1:latest",
"ollama_base_url": "http://localhost:11434" # Auto-adjusted in Docker
}
}
}
"""
import os
import json
import hashlib
import socket
import platform
from mem0 import Memory
from app.database import SessionLocal
from app.models import Config as ConfigModel
memory_client = None
_memory_client = None
_config_hash = None
def _get_config_hash(config_dict):
"""Generate a hash of the config to detect changes."""
config_str = json.dumps(config_dict, sort_keys=True)
return hashlib.md5(config_str.encode()).hexdigest()
def _get_docker_host_url():
"""
Determine the appropriate host URL to reach host machine from inside Docker container.
Returns the best available option for reaching the host from inside a container.
"""
# Check for custom environment variable first
custom_host = os.environ.get('OLLAMA_HOST')
if custom_host:
print(f"Using custom Ollama host from OLLAMA_HOST: {custom_host}")
return custom_host.replace('http://', '').replace('https://', '').split(':')[0]
# Check if we're running inside Docker
if not os.path.exists('/.dockerenv'):
# Not in Docker, return localhost as-is
return "localhost"
print("Detected Docker environment, adjusting host URL for Ollama...")
# Try different host resolution strategies
host_candidates = []
# 1. host.docker.internal (works on Docker Desktop for Mac/Windows)
try:
socket.gethostbyname('host.docker.internal')
host_candidates.append('host.docker.internal')
print("Found host.docker.internal")
except socket.gaierror:
pass
# 2. Docker bridge gateway (typically 172.17.0.1 on Linux)
try:
with open('/proc/net/route', 'r') as f:
for line in f:
fields = line.strip().split()
if fields[1] == '00000000': # Default route
gateway_hex = fields[2]
gateway_ip = socket.inet_ntoa(bytes.fromhex(gateway_hex)[::-1])
host_candidates.append(gateway_ip)
print(f"Found Docker gateway: {gateway_ip}")
break
except (FileNotFoundError, IndexError, ValueError):
pass
# 3. Fallback to common Docker bridge IP
if not host_candidates:
host_candidates.append('172.17.0.1')
print("Using fallback Docker bridge IP: 172.17.0.1")
# Return the first available candidate
return host_candidates[0]
def _fix_ollama_urls(config_section):
"""
Fix Ollama URLs for Docker environment.
Replaces localhost URLs with appropriate Docker host URLs.
Sets default ollama_base_url if not provided.
"""
if not config_section or "config" not in config_section:
return config_section
ollama_config = config_section["config"]
# Set default ollama_base_url if not provided
if "ollama_base_url" not in ollama_config:
ollama_config["ollama_base_url"] = "http://host.docker.internal:11434"
else:
# Check for ollama_base_url and fix if it's localhost
url = ollama_config["ollama_base_url"]
if "localhost" in url or "127.0.0.1" in url:
docker_host = _get_docker_host_url()
if docker_host != "localhost":
new_url = url.replace("localhost", docker_host).replace("127.0.0.1", docker_host)
ollama_config["ollama_base_url"] = new_url
print(f"Adjusted Ollama URL from {url} to {new_url}")
return config_section
def reset_memory_client():
"""Reset the global memory client to force reinitialization with new config."""
global _memory_client, _config_hash
_memory_client = None
_config_hash = None
def get_default_memory_config():
"""Get default memory client configuration with sensible defaults."""
return {
"vector_store": {
"provider": "qdrant",
"config": {
"collection_name": "openmemory",
"host": "mem0_store",
"port": 6333,
}
},
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4o-mini",
"temperature": 0.1,
"max_tokens": 2000,
"api_key": "env:OPENAI_API_KEY"
}
},
"embedder": {
"provider": "openai",
"config": {
"model": "text-embedding-3-small",
"api_key": "env:OPENAI_API_KEY"
}
},
"version": "v1.1"
}
def _parse_environment_variables(config_dict):
"""
Parse environment variables in config values.
Converts 'env:VARIABLE_NAME' to actual environment variable values.
"""
if isinstance(config_dict, dict):
parsed_config = {}
for key, value in config_dict.items():
if isinstance(value, str) and value.startswith("env:"):
env_var = value.split(":", 1)[1]
env_value = os.environ.get(env_var)
if env_value:
parsed_config[key] = env_value
print(f"Loaded {env_var} from environment for {key}")
else:
print(f"Warning: Environment variable {env_var} not found, keeping original value")
parsed_config[key] = value
elif isinstance(value, dict):
parsed_config[key] = _parse_environment_variables(value)
else:
parsed_config[key] = value
return parsed_config
return config_dict
def get_memory_client(custom_instructions: str = None):
@@ -14,37 +198,94 @@ def get_memory_client(custom_instructions: str = None):
custom_instructions: Optional instructions for the memory project.
Returns:
Initialized Mem0 client instance.
Initialized Mem0 client instance or None if initialization fails.
Raises:
Exception: If required API keys are not set.
Exception: If required API keys are not set or critical configuration is missing.
"""
global memory_client
if memory_client is not None:
return memory_client
global _memory_client, _config_hash
try:
config = {
"vector_store": {
"provider": "qdrant",
"config": {
"collection_name": "openmemory",
"host": "mem0_store",
"port": 6333,
}
}
}
# Start with default configuration
config = get_default_memory_config()
# Variable to track custom instructions
db_custom_instructions = None
# Load configuration from database
try:
db = SessionLocal()
db_config = db.query(ConfigModel).filter(ConfigModel.key == "main").first()
if db_config:
json_config = db_config.value
# Extract custom instructions from openmemory settings
if "openmemory" in json_config and "custom_instructions" in json_config["openmemory"]:
db_custom_instructions = json_config["openmemory"]["custom_instructions"]
# Override defaults with configurations from the database
if "mem0" in json_config:
mem0_config = json_config["mem0"]
# Update LLM configuration if available
if "llm" in mem0_config and mem0_config["llm"] is not None:
config["llm"] = mem0_config["llm"]
# Fix Ollama URLs for Docker if needed
if config["llm"].get("provider") == "ollama":
config["llm"] = _fix_ollama_urls(config["llm"])
# Update Embedder configuration if available
if "embedder" in mem0_config and mem0_config["embedder"] is not None:
config["embedder"] = mem0_config["embedder"]
# Fix Ollama URLs for Docker if needed
if config["embedder"].get("provider") == "ollama":
config["embedder"] = _fix_ollama_urls(config["embedder"])
else:
print("No configuration found in database, using defaults")
db.close()
except Exception as e:
print(f"Warning: Error loading configuration from database: {e}")
print("Using default configuration")
# Continue with default configuration if database config can't be loaded
memory_client = Memory.from_config(config_dict=config)
except Exception:
raise Exception("Exception occurred while initializing memory client")
# Use custom_instructions parameter first, then fall back to database value
instructions_to_use = custom_instructions or db_custom_instructions
if instructions_to_use:
config["custom_fact_extraction_prompt"] = instructions_to_use
# Update project with custom instructions if provided
if custom_instructions:
memory_client.update_project(custom_instructions=custom_instructions)
# ALWAYS parse environment variables in the final config
# This ensures that even default config values like "env:OPENAI_API_KEY" get parsed
print("Parsing environment variables in final config...")
config = _parse_environment_variables(config)
return memory_client
# Check if config has changed by comparing hashes
current_config_hash = _get_config_hash(config)
# Only reinitialize if config changed or client doesn't exist
if _memory_client is None or _config_hash != current_config_hash:
print(f"Initializing memory client with config hash: {current_config_hash}")
try:
_memory_client = Memory.from_config(config_dict=config)
_config_hash = current_config_hash
print("Memory client initialized successfully")
except Exception as init_error:
print(f"Warning: Failed to initialize memory client: {init_error}")
print("Server will continue running with limited memory functionality")
_memory_client = None
_config_hash = None
return None
return _memory_client
except Exception as e:
print(f"Warning: Exception occurred while initializing memory client: {e}")
print("Server will continue running with limited memory functionality")
return None
def get_default_user_id():