Update Docs (#2277)

This commit is contained in:
Saket Aryan
2025-03-01 06:07:05 +05:30
committed by GitHub
parent c1aba35884
commit 5606c3ffb8
30 changed files with 437 additions and 877 deletions

View File

@@ -6,16 +6,17 @@ iconType: "solid"
## How to define configurations?
The `config` is defined as a Python dictionary with two main keys:
The `config` is defined as an object with two main keys:
- `vector_store`: Specifies the vector database provider and its configuration
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus","azure_ai_search")
- `config`: A nested dictionary containing provider-specific settings
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus", "azure_ai_search")
- `config`: A nested object containing provider-specific settings
## How to Use Config
Here's a general example of how to use the config with mem0:
```python
<CodeGroup>
```python Python
import os
from mem0 import Memory
@@ -34,6 +35,29 @@ m = Memory.from_config(config)
m.add("Your text here", user_id="user", metadata={"category": "example"})
```
```typescript TypeScript
// Example for in-memory vector database (Only supported in TypeScript)
import { Memory } from 'mem0ai/oss';
const configMemory = {
vector_store: {
provider: 'memory',
config: {
collectionName: 'memories',
dimension: 1536,
},
},
};
const memory = new Memory(configMemory);
await memory.add("Your text here", { userId: "user", metadata: { category: "example" } });
```
</CodeGroup>
<Note>
The in-memory vector database is only supported in the TypeScript implementation.
</Note>
## Why is Config Needed?
Config is essential for:
@@ -46,6 +70,8 @@ Config is essential for:
Here's a comprehensive list of all parameters that can be used across different vector databases:
<Tabs>
<Tab title="Python">
| Parameter | Description |
|-----------|-------------|
| `collection_name` | Name of the collection |
@@ -60,6 +86,24 @@ Here's a comprehensive list of all parameters that can be used across different
| `url` | Full URL for the server |
| `api_key` | API key for the server |
| `on_disk` | Enable persistent storage |
</Tab>
<Tab title="TypeScript">
| Parameter | Description |
|-----------|-------------|
| `collectionName` | Name of the collection |
| `embeddingModelDims` | Dimensions of the embedding model |
| `dimension` | Dimensions of the embedding model (for memory provider) |
| `host` | Host where the server is running |
| `port` | Port where the server is running |
| `url` | URL for the server |
| `apiKey` | API key for the server |
| `path` | Path for the database |
| `onDisk` | Enable persistent storage |
| `redisUrl` | URL for the Redis server |
| `username` | Username for database connection |
| `password` | Password for database connection |
</Tab>
</Tabs>
## Customizing Config

View File

@@ -2,7 +2,8 @@
### Usage
```python
<CodeGroup>
```python Python
import os
from mem0 import Memory
@@ -23,10 +24,32 @@ m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
```typescript TypeScript
import { Memory } from 'mem0ai/oss';
const config = {
vectorStore: {
provider: 'qdrant',
config: {
collectionName: 'memories',
embeddingModelDims: 1536,
host: 'localhost',
port: 6333,
},
},
};
const memory = new Memory(config);
await memory.add("Likes to play cricket on weekends", { userId: "alice", metadata: { category: "hobbies" } });
```
</CodeGroup>
### Config
Let's see the available parameters for the `qdrant` config:
<Tabs>
<Tab title="Python">
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collection_name` | The name of the collection to store the vectors | `mem0` |
@@ -37,4 +60,18 @@ Let's see the available parameters for the `qdrant` config:
| `path` | Path for the qdrant database | `/tmp/qdrant` |
| `url` | Full URL for the qdrant server | `None` |
| `api_key` | API key for the qdrant server | `None` |
| `on_disk` | For enabling persistent storage | `False` |
| `on_disk` | For enabling persistent storage | `False` |
</Tab>
<Tab title="TypeScript">
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collectionName` | The name of the collection to store the vectors | `mem0` |
| `embeddingModelDims` | Dimensions of the embedding model | `1536` |
| `host` | The host where the Qdrant server is running | `None` |
| `port` | The port where the Qdrant server is running | `None` |
| `path` | Path for the Qdrant database | `/tmp/qdrant` |
| `url` | Full URL for the Qdrant server | `None` |
| `apiKey` | API key for the Qdrant server | `None` |
| `onDisk` | For enabling persistent storage | `False` |
</Tab>
</Tabs>

View File

@@ -12,7 +12,8 @@ docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/redis-stack:lat
### Usage
```python
<CodeGroup>
```python Python
import os
from mem0 import Memory
@@ -34,12 +35,46 @@ m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
```typescript TypeScript
import { Memory } from 'mem0ai/oss';
const config = {
vectorStore: {
provider: 'redis',
config: {
collectionName: 'memories',
embeddingModelDims: 1536,
redisUrl: 'redis://localhost:6379',
username: 'your-redis-username',
password: 'your-redis-password',
},
},
};
const memory = new Memory(config);
await memory.add("Likes to play cricket on weekends", { userId: "alice", metadata: { category: "hobbies" } });
```
</CodeGroup>
### Config
Let's see the available parameters for the `redis` config:
<Tabs>
<Tab title="Python">
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collection_name` | The name of the collection to store the vectors | `mem0` |
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
| `redis_url` | The URL of the Redis server | `None` |
| `redis_url` | The URL of the Redis server | `None` |
</Tab>
<Tab title="TypeScript">
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collectionName` | The name of the collection to store the vectors | `mem0` |
| `embeddingModelDims` | Dimensions of the embedding model | `1536` |
| `redisUrl` | The URL of the Redis server | `None` |
| `username` | Username for Redis connection | `None` |
| `password` | Password for Redis connection | `None` |
</Tab>
</Tabs>

View File

@@ -10,6 +10,10 @@ Mem0 includes built-in support for various popular databases. Memory can utilize
See the list of supported vector databases below.
<Note>
The following vector databases are supported in the Python implementation. The TypeScript implementation currently only supports Qdrant, Redis and in-memory vector database.
</Note>
<CardGroup cols={3}>
<Card title="Qdrant" href="/components/vectordbs/dbs/qdrant"></Card>
<Card title="Chroma" href="/components/vectordbs/dbs/chroma"></Card>