Update Docs (#2277)
This commit is contained in:
@@ -8,16 +8,18 @@ Config in mem0 is a dictionary that specifies the settings for your embedding mo
|
||||
|
||||
## How to define configurations?
|
||||
|
||||
The config is defined as a Python dictionary with two main keys:
|
||||
The config is defined as an object (or dictionary) with two main keys:
|
||||
- `embedder`: Specifies the embedder provider and its configuration
|
||||
- `provider`: The name of the embedder (e.g., "openai", "ollama")
|
||||
- `config`: A nested dictionary containing provider-specific settings
|
||||
- `config`: A nested object or dictionary containing provider-specific settings
|
||||
|
||||
|
||||
## How to use configurations?
|
||||
|
||||
Here's a general example of how to use the config with mem0:
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -36,6 +38,25 @@ m = Memory.from_config(config)
|
||||
m.add("Your text here", user_id="user", metadata={"category": "example"})
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const config = {
|
||||
embedder: {
|
||||
provider: 'openai',
|
||||
config: {
|
||||
apiKey: process.env.OPENAI_API_KEY || '',
|
||||
model: 'text-embedding-3-small',
|
||||
// Provider-specific settings go here
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
await memory.add("Your text here", { userId: "user", metadata: { category: "example" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Why is Config Needed?
|
||||
|
||||
Config is essential for:
|
||||
@@ -47,6 +68,8 @@ Config is essential for:
|
||||
|
||||
Here's a comprehensive list of all parameters that can be used across different embedders:
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
| Parameter | Description | Provider |
|
||||
|-----------|-------------|----------|
|
||||
| `model` | Embedding model to use | All |
|
||||
@@ -61,7 +84,15 @@ Here's a comprehensive list of all parameters that can be used across different
|
||||
| `memory_add_embedding_type` | The type of embedding to use for the add memory action | VertexAI |
|
||||
| `memory_update_embedding_type` | The type of embedding to use for the update memory action | VertexAI |
|
||||
| `memory_search_embedding_type` | The type of embedding to use for the search memory action | VertexAI |
|
||||
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Provider |
|
||||
|-----------|-------------|----------|
|
||||
| `model` | Embedding model to use | All |
|
||||
| `apiKey` | API key of the provider | All |
|
||||
| `embeddingDims` | Dimensions of the embedding model | All |
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Supported Embedding Models
|
||||
|
||||
|
||||
@@ -6,7 +6,8 @@ To use OpenAI embedding models, set the `OPENAI_API_KEY` environment variable. Y
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -25,12 +26,41 @@ m = Memory.from_config(config)
|
||||
m.add("I'm visiting Paris", user_id="john")
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const config = {
|
||||
embedder: {
|
||||
provider: 'openai',
|
||||
config: {
|
||||
apiKey: 'your-openai-api-key',
|
||||
model: 'text-embedding-3-large',
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
await memory.add("I'm visiting Paris", { userId: "john" });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### Config
|
||||
|
||||
Here are the parameters available for configuring OpenAI embedder:
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `model` | The name of the embedding model to use | `text-embedding-3-small` |
|
||||
| `embedding_dims` | Dimensions of the embedding model | `1536` |
|
||||
| `api_key` | The OpenAI API key | `None` |
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `model` | The name of the embedding model to use | `text-embedding-3-small` |
|
||||
| `embeddingDims` | Dimensions of the embedding model | `1536` |
|
||||
| `apiKey` | The OpenAI API key | `None` |
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
@@ -10,6 +10,10 @@ Mem0 offers support for various embedding models, allowing users to choose the o
|
||||
|
||||
See the list of supported embedders below.
|
||||
|
||||
<Note>
|
||||
The following embedders are supported in the Python implementation. The TypeScript implementation currently only supports OpenAI.
|
||||
</Note>
|
||||
|
||||
<CardGroup cols={4}>
|
||||
<Card title="OpenAI" href="/components/embedders/models/openai"></Card>
|
||||
<Card title="Azure OpenAI" href="/components/embedders/models/azure_openai"></Card>
|
||||
|
||||
@@ -6,26 +6,40 @@ iconType: "solid"
|
||||
|
||||
## How to define configurations?
|
||||
|
||||
The `config` is defined as a Python dictionary with two main keys:
|
||||
- `llm`: Specifies the llm provider and its configuration
|
||||
- `provider`: The name of the llm (e.g., "openai", "groq")
|
||||
- `config`: A nested dictionary containing provider-specific settings
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
The `config` is defined as a Python dictionary with two main keys:
|
||||
- `llm`: Specifies the llm provider and its configuration
|
||||
- `provider`: The name of the llm (e.g., "openai", "groq")
|
||||
- `config`: A nested dictionary containing provider-specific settings
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
The `config` is defined as a TypeScript object with these keys:
|
||||
- `llm`: Specifies the LLM provider and its configuration (required)
|
||||
- `provider`: The name of the LLM (e.g., "openai", "groq")
|
||||
- `config`: A nested object containing provider-specific settings
|
||||
- `embedder`: Specifies the embedder provider and its configuration (optional)
|
||||
- `vectorStore`: Specifies the vector store provider and its configuration (optional)
|
||||
- `historyDbPath`: Path to the history database file (optional)
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
### Config Values Precedence
|
||||
|
||||
Config values are applied in the following order of precedence (from highest to lowest):
|
||||
|
||||
1. Values explicitly set in the `config` dictionary
|
||||
1. Values explicitly set in the `config` object/dictionary
|
||||
2. Environment variables (e.g., `OPENAI_API_KEY`, `OPENAI_API_BASE`)
|
||||
3. Default values defined in the LLM implementation
|
||||
|
||||
This means that values specified in the `config` dictionary will override corresponding environment variables, which in turn override default values.
|
||||
This means that values specified in the `config` will override corresponding environment variables, which in turn override default values.
|
||||
|
||||
## How to Use Config
|
||||
|
||||
Here's a general example of how to use the config with mem0:
|
||||
Here's a general example of how to use the config with Mem0:
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -44,39 +58,70 @@ m = Memory.from_config(config)
|
||||
m.add("Your text here", user_id="user", metadata={"category": "example"})
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
// Minimal configuration with just the LLM settings
|
||||
const config = {
|
||||
llm: {
|
||||
provider: 'your_chosen_provider',
|
||||
config: {
|
||||
// Provider-specific settings go here
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
await memory.add("Your text here", { userId: "user123", metadata: { category: "example" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Why is Config Needed?
|
||||
|
||||
Config is essential for:
|
||||
1. Specifying which llm to use.
|
||||
1. Specifying which LLM to use.
|
||||
2. Providing necessary connection details (e.g., model, api_key, temperature).
|
||||
3. Ensuring proper initialization and connection to your chosen llm.
|
||||
3. Ensuring proper initialization and connection to your chosen LLM.
|
||||
|
||||
## Master List of All Params in Config
|
||||
|
||||
Here's a comprehensive list of all parameters that can be used across different llms:
|
||||
Here's a comprehensive list of all parameters that can be used across different LLMs:
|
||||
|
||||
Here's the table based on the provided parameters:
|
||||
|
||||
| Parameter | Description | Provider |
|
||||
|----------------------|-----------------------------------------------|-------------------|
|
||||
| `model` | Embedding model to use | All |
|
||||
| `temperature` | Temperature of the model | All |
|
||||
| `api_key` | API key to use | All |
|
||||
| `max_tokens` | Tokens to generate | All |
|
||||
| `top_p` | Probability threshold for nucleus sampling | All |
|
||||
| `top_k` | Number of highest probability tokens to keep | All |
|
||||
| `http_client_proxies`| Allow proxy server settings | AzureOpenAI |
|
||||
| `models` | List of models | Openrouter |
|
||||
| `route` | Routing strategy | Openrouter |
|
||||
| `openrouter_base_url`| Base URL for Openrouter API | Openrouter |
|
||||
| `site_url` | Site URL | Openrouter |
|
||||
| `app_name` | Application name | Openrouter |
|
||||
| `ollama_base_url` | Base URL for Ollama API | Ollama |
|
||||
| `openai_base_url` | Base URL for OpenAI API | OpenAI |
|
||||
| `azure_kwargs` | Azure LLM args for initialization | AzureOpenAI |
|
||||
| `deepseek_base_url` | Base URL for DeepSeek API | DeepSeek |
|
||||
| `xai_base_url` | Base URL for XAI API | XAI |
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
| Parameter | Description | Provider |
|
||||
|----------------------|-----------------------------------------------|-------------------|
|
||||
| `model` | Embedding model to use | All |
|
||||
| `temperature` | Temperature of the model | All |
|
||||
| `api_key` | API key to use | All |
|
||||
| `max_tokens` | Tokens to generate | All |
|
||||
| `top_p` | Probability threshold for nucleus sampling | All |
|
||||
| `top_k` | Number of highest probability tokens to keep | All |
|
||||
| `http_client_proxies`| Allow proxy server settings | AzureOpenAI |
|
||||
| `models` | List of models | Openrouter |
|
||||
| `route` | Routing strategy | Openrouter |
|
||||
| `openrouter_base_url`| Base URL for Openrouter API | Openrouter |
|
||||
| `site_url` | Site URL | Openrouter |
|
||||
| `app_name` | Application name | Openrouter |
|
||||
| `ollama_base_url` | Base URL for Ollama API | Ollama |
|
||||
| `openai_base_url` | Base URL for OpenAI API | OpenAI |
|
||||
| `azure_kwargs` | Azure LLM args for initialization | AzureOpenAI |
|
||||
| `deepseek_base_url` | Base URL for DeepSeek API | DeepSeek |
|
||||
| `xai_base_url` | Base URL for XAI API | XAI |
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Provider |
|
||||
|----------------------|-----------------------------------------------|-------------------|
|
||||
| `model` | Embedding model to use | All |
|
||||
| `temperature` | Temperature of the model | All |
|
||||
| `apiKey` | API key to use | All |
|
||||
| `maxTokens` | Tokens to generate | All |
|
||||
| `topP` | Probability threshold for nucleus sampling | All |
|
||||
| `topK` | Number of highest probability tokens to keep | All |
|
||||
| `openaiBaseUrl` | Base URL for OpenAI API | OpenAI |
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Supported LLMs
|
||||
|
||||
For detailed information on configuring specific llms, please visit the [LLMs](./models) section. There you'll find information for each supported llm with provider-specific usage examples and configuration details.
|
||||
For detailed information on configuring specific LLMs, please visit the [LLMs](./models) section. There you'll find information for each supported LLM with provider-specific usage examples and configuration details.
|
||||
|
||||
@@ -1,8 +1,13 @@
|
||||
---
|
||||
title: Anthropic
|
||||
---
|
||||
|
||||
To use anthropic's models, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -24,6 +29,26 @@ m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const config = {
|
||||
llm: {
|
||||
provider: 'anthropic',
|
||||
config: {
|
||||
apiKey: process.env.ANTHROPIC_API_KEY || '',
|
||||
model: 'claude-3-7-sonnet-latest',
|
||||
temperature: 0.1,
|
||||
maxTokens: 2000,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
await memory.add("Likes to play cricket on weekends", { userId: "alice", metadata: { category: "hobbies" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Config
|
||||
|
||||
All available parameters for the `anthropic` config are present in [Master List of All Params in Config](../config).
|
||||
@@ -1,10 +1,15 @@
|
||||
---
|
||||
title: Groq
|
||||
---
|
||||
|
||||
[Groq](https://groq.com/) is the creator of the world's first Language Processing Unit (LPU), providing exceptional speed performance for AI workloads running on their LPU Inference Engine.
|
||||
|
||||
In order to use LLMs from Groq, go to their [platform](https://console.groq.com/keys) and get the API key. Set the API key as `GROQ_API_KEY` environment variable to use the model as given below in the example.
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -26,6 +31,26 @@ m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const config = {
|
||||
llm: {
|
||||
provider: 'groq',
|
||||
config: {
|
||||
apiKey: process.env.GROQ_API_KEY || '',
|
||||
model: 'mixtral-8x7b-32768',
|
||||
temperature: 0.1,
|
||||
maxTokens: 1000,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
await memory.add("Likes to play cricket on weekends", { userId: "alice", metadata: { category: "hobbies" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
## Config
|
||||
|
||||
All available parameters for the `groq` config are present in [Master List of All Params in Config](../config).
|
||||
@@ -6,7 +6,8 @@ To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment varia
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -38,6 +39,26 @@ m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const config = {
|
||||
llm: {
|
||||
provider: 'openai',
|
||||
config: {
|
||||
apiKey: process.env.OPENAI_API_KEY || '',
|
||||
model: 'gpt-4-turbo-preview',
|
||||
temperature: 0.2,
|
||||
maxTokens: 1500,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
await memory.add("Likes to play cricket on weekends", { userId: "alice", metadata: { category: "hobbies" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
We also support the new [OpenAI structured-outputs](https://platform.openai.com/docs/guides/structured-outputs/introduction) model.
|
||||
|
||||
```python
|
||||
@@ -59,7 +80,9 @@ config = {
|
||||
m = Memory.from_config(config)
|
||||
```
|
||||
|
||||
|
||||
<Note>
|
||||
OpenAI structured-outputs is currently only available in the Python implementation.
|
||||
</Note>
|
||||
|
||||
## Config
|
||||
|
||||
|
||||
@@ -14,20 +14,24 @@ For a comprehensive list of available parameters for llm configuration, please r
|
||||
|
||||
To view all supported llms, visit the [Supported LLMs](./models).
|
||||
|
||||
<Note>
|
||||
All LLMs are supported in Python. The following LLMs are also supported in TypeScript: **OpenAI**, **Anthropic**, and **Groq**.
|
||||
</Note>
|
||||
|
||||
<CardGroup cols={4}>
|
||||
<Card title="OpenAI" href="/components/llms/models/openai"></Card>
|
||||
<Card title="Ollama" href="/components/llms/models/ollama"></Card>
|
||||
<Card title="Azure OpenAI" href="/components/llms/models/azure_openai"></Card>
|
||||
<Card title="Anthropic" href="/components/llms/models/anthropic"></Card>
|
||||
<Card title="Together" href="/components/llms/models/together"></Card>
|
||||
<Card title="Groq" href="/components/llms/models/groq"></Card>
|
||||
<Card title="Litellm" href="/components/llms/models/litellm"></Card>
|
||||
<Card title="Mistral AI" href="/components/llms/models/mistral_ai"></Card>
|
||||
<Card title="Google AI" href="/components/llms/models/google_ai"></Card>
|
||||
<Card title="AWS bedrock" href="/components/llms/models/aws_bedrock"></Card>
|
||||
<Card title="Gemini" href="/components/llms/models/gemini"></Card>
|
||||
<Card title="DeepSeek" href="/components/llms/models/deepseek"></Card>
|
||||
<Card title="xAI" href="/components/llms/models/xAI"></Card>
|
||||
<Card title="OpenAI" href="/components/llms/models/openai" />
|
||||
<Card title="Ollama" href="/components/llms/models/ollama" />
|
||||
<Card title="Azure OpenAI" href="/components/llms/models/azure_openai" />
|
||||
<Card title="Anthropic" href="/components/llms/models/anthropic" />
|
||||
<Card title="Together" href="/components/llms/models/together" />
|
||||
<Card title="Groq" href="/components/llms/models/groq" />
|
||||
<Card title="Litellm" href="/components/llms/models/litellm" />
|
||||
<Card title="Mistral AI" href="/components/llms/models/mistral_ai" />
|
||||
<Card title="Google AI" href="/components/llms/models/google_ai" />
|
||||
<Card title="AWS bedrock" href="/components/llms/models/aws_bedrock" />
|
||||
<Card title="Gemini" href="/components/llms/models/gemini" />
|
||||
<Card title="DeepSeek" href="/components/llms/models/deepseek" />
|
||||
<Card title="xAI" href="/components/llms/models/xAI" />
|
||||
</CardGroup>
|
||||
|
||||
## Structured vs Unstructured Outputs
|
||||
|
||||
@@ -6,16 +6,17 @@ iconType: "solid"
|
||||
|
||||
## How to define configurations?
|
||||
|
||||
The `config` is defined as a Python dictionary with two main keys:
|
||||
The `config` is defined as an object with two main keys:
|
||||
- `vector_store`: Specifies the vector database provider and its configuration
|
||||
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus","azure_ai_search")
|
||||
- `config`: A nested dictionary containing provider-specific settings
|
||||
- `provider`: The name of the vector database (e.g., "chroma", "pgvector", "qdrant", "milvus", "azure_ai_search")
|
||||
- `config`: A nested object containing provider-specific settings
|
||||
|
||||
## How to Use Config
|
||||
|
||||
Here's a general example of how to use the config with mem0:
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -34,6 +35,29 @@ m = Memory.from_config(config)
|
||||
m.add("Your text here", user_id="user", metadata={"category": "example"})
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
// Example for in-memory vector database (Only supported in TypeScript)
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const configMemory = {
|
||||
vector_store: {
|
||||
provider: 'memory',
|
||||
config: {
|
||||
collectionName: 'memories',
|
||||
dimension: 1536,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(configMemory);
|
||||
await memory.add("Your text here", { userId: "user", metadata: { category: "example" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
<Note>
|
||||
The in-memory vector database is only supported in the TypeScript implementation.
|
||||
</Note>
|
||||
|
||||
## Why is Config Needed?
|
||||
|
||||
Config is essential for:
|
||||
@@ -46,6 +70,8 @@ Config is essential for:
|
||||
|
||||
Here's a comprehensive list of all parameters that can be used across different vector databases:
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
| Parameter | Description |
|
||||
|-----------|-------------|
|
||||
| `collection_name` | Name of the collection |
|
||||
@@ -60,6 +86,24 @@ Here's a comprehensive list of all parameters that can be used across different
|
||||
| `url` | Full URL for the server |
|
||||
| `api_key` | API key for the server |
|
||||
| `on_disk` | Enable persistent storage |
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description |
|
||||
|-----------|-------------|
|
||||
| `collectionName` | Name of the collection |
|
||||
| `embeddingModelDims` | Dimensions of the embedding model |
|
||||
| `dimension` | Dimensions of the embedding model (for memory provider) |
|
||||
| `host` | Host where the server is running |
|
||||
| `port` | Port where the server is running |
|
||||
| `url` | URL for the server |
|
||||
| `apiKey` | API key for the server |
|
||||
| `path` | Path for the database |
|
||||
| `onDisk` | Enable persistent storage |
|
||||
| `redisUrl` | URL for the Redis server |
|
||||
| `username` | Username for database connection |
|
||||
| `password` | Password for database connection |
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Customizing Config
|
||||
|
||||
|
||||
@@ -2,7 +2,8 @@
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -23,10 +24,32 @@ m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const config = {
|
||||
vectorStore: {
|
||||
provider: 'qdrant',
|
||||
config: {
|
||||
collectionName: 'memories',
|
||||
embeddingModelDims: 1536,
|
||||
host: 'localhost',
|
||||
port: 6333,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
await memory.add("Likes to play cricket on weekends", { userId: "alice", metadata: { category: "hobbies" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### Config
|
||||
|
||||
Let's see the available parameters for the `qdrant` config:
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `collection_name` | The name of the collection to store the vectors | `mem0` |
|
||||
@@ -37,4 +60,18 @@ Let's see the available parameters for the `qdrant` config:
|
||||
| `path` | Path for the qdrant database | `/tmp/qdrant` |
|
||||
| `url` | Full URL for the qdrant server | `None` |
|
||||
| `api_key` | API key for the qdrant server | `None` |
|
||||
| `on_disk` | For enabling persistent storage | `False` |
|
||||
| `on_disk` | For enabling persistent storage | `False` |
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `collectionName` | The name of the collection to store the vectors | `mem0` |
|
||||
| `embeddingModelDims` | Dimensions of the embedding model | `1536` |
|
||||
| `host` | The host where the Qdrant server is running | `None` |
|
||||
| `port` | The port where the Qdrant server is running | `None` |
|
||||
| `path` | Path for the Qdrant database | `/tmp/qdrant` |
|
||||
| `url` | Full URL for the Qdrant server | `None` |
|
||||
| `apiKey` | API key for the Qdrant server | `None` |
|
||||
| `onDisk` | For enabling persistent storage | `False` |
|
||||
</Tab>
|
||||
</Tabs>
|
||||
@@ -12,7 +12,8 @@ docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/redis-stack:lat
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
<CodeGroup>
|
||||
```python Python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
@@ -34,12 +35,46 @@ m = Memory.from_config(config)
|
||||
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
||||
```
|
||||
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const config = {
|
||||
vectorStore: {
|
||||
provider: 'redis',
|
||||
config: {
|
||||
collectionName: 'memories',
|
||||
embeddingModelDims: 1536,
|
||||
redisUrl: 'redis://localhost:6379',
|
||||
username: 'your-redis-username',
|
||||
password: 'your-redis-password',
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
await memory.add("Likes to play cricket on weekends", { userId: "alice", metadata: { category: "hobbies" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### Config
|
||||
|
||||
Let's see the available parameters for the `redis` config:
|
||||
|
||||
<Tabs>
|
||||
<Tab title="Python">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `collection_name` | The name of the collection to store the vectors | `mem0` |
|
||||
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
|
||||
| `redis_url` | The URL of the Redis server | `None` |
|
||||
| `redis_url` | The URL of the Redis server | `None` |
|
||||
</Tab>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `collectionName` | The name of the collection to store the vectors | `mem0` |
|
||||
| `embeddingModelDims` | Dimensions of the embedding model | `1536` |
|
||||
| `redisUrl` | The URL of the Redis server | `None` |
|
||||
| `username` | Username for Redis connection | `None` |
|
||||
| `password` | Password for Redis connection | `None` |
|
||||
</Tab>
|
||||
</Tabs>
|
||||
@@ -10,6 +10,10 @@ Mem0 includes built-in support for various popular databases. Memory can utilize
|
||||
|
||||
See the list of supported vector databases below.
|
||||
|
||||
<Note>
|
||||
The following vector databases are supported in the Python implementation. The TypeScript implementation currently only supports Qdrant, Redis and in-memory vector database.
|
||||
</Note>
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card title="Qdrant" href="/components/vectordbs/dbs/qdrant"></Card>
|
||||
<Card title="Chroma" href="/components/vectordbs/dbs/chroma"></Card>
|
||||
|
||||
Reference in New Issue
Block a user