[Misc] Lint code and fix code smells (#1871)
This commit is contained in:
@@ -1,4 +1,3 @@
|
||||
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import httpx
|
||||
@@ -7,26 +6,28 @@ import pytest
|
||||
from mem0.configs.llms.base import BaseLlmConfig
|
||||
from mem0.llms.azure_openai import AzureOpenAILLM
|
||||
|
||||
MODEL = "gpt-4o" # or your custom deployment name
|
||||
MODEL = "gpt-4o" # or your custom deployment name
|
||||
TEMPERATURE = 0.7
|
||||
MAX_TOKENS = 100
|
||||
TOP_P = 1.0
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_openai_client():
|
||||
with patch('mem0.llms.azure_openai.AzureOpenAI') as mock_openai:
|
||||
with patch("mem0.llms.azure_openai.AzureOpenAI") as mock_openai:
|
||||
mock_client = Mock()
|
||||
mock_openai.return_value = mock_client
|
||||
yield mock_client
|
||||
|
||||
|
||||
def test_generate_response_without_tools(mock_openai_client):
|
||||
config = BaseLlmConfig(model=MODEL, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P)
|
||||
llm = AzureOpenAILLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||
mock_openai_client.chat.completions.create.return_value = mock_response
|
||||
@@ -34,11 +35,7 @@ def test_generate_response_without_tools(mock_openai_client):
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_openai_client.chat.completions.create.assert_called_once_with(
|
||||
model=MODEL,
|
||||
messages=messages,
|
||||
temperature=TEMPERATURE,
|
||||
max_tokens=MAX_TOKENS,
|
||||
top_p=TOP_P
|
||||
model=MODEL, messages=messages, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P
|
||||
)
|
||||
assert response == "I'm doing well, thank you for asking!"
|
||||
|
||||
@@ -48,7 +45,7 @@ def test_generate_response_with_tools(mock_openai_client):
|
||||
llm = AzureOpenAILLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."},
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
@@ -58,23 +55,21 @@ def test_generate_response_with_tools(mock_openai_client):
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"type": "string", "description": "Data to add to memory"}
|
||||
},
|
||||
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_message = Mock()
|
||||
mock_message.content = "I've added the memory for you."
|
||||
|
||||
|
||||
mock_tool_call = Mock()
|
||||
mock_tool_call.function.name = "add_memory"
|
||||
mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
|
||||
|
||||
|
||||
mock_message.tool_calls = [mock_tool_call]
|
||||
mock_response.choices = [Mock(message=mock_message)]
|
||||
mock_openai_client.chat.completions.create.return_value = mock_response
|
||||
@@ -88,24 +83,33 @@ def test_generate_response_with_tools(mock_openai_client):
|
||||
max_tokens=MAX_TOKENS,
|
||||
top_p=TOP_P,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
tool_choice="auto",
|
||||
)
|
||||
|
||||
|
||||
assert response["content"] == "I've added the memory for you."
|
||||
assert len(response["tool_calls"]) == 1
|
||||
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
|
||||
assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}
|
||||
|
||||
|
||||
def test_generate_with_http_proxies():
|
||||
mock_http_client = Mock(spec=httpx.Client)
|
||||
mock_http_client_instance = Mock(spec=httpx.Client)
|
||||
mock_http_client.return_value = mock_http_client_instance
|
||||
|
||||
with (patch("mem0.llms.azure_openai.AzureOpenAI") as mock_azure_openai,
|
||||
patch("httpx.Client", new=mock_http_client) as mock_http_client):
|
||||
config = BaseLlmConfig(model=MODEL, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P,
|
||||
api_key="test", http_client_proxies="http://testproxy.mem0.net:8000",
|
||||
azure_kwargs= {"api_key" : "test"})
|
||||
with (
|
||||
patch("mem0.llms.azure_openai.AzureOpenAI") as mock_azure_openai,
|
||||
patch("httpx.Client", new=mock_http_client) as mock_http_client,
|
||||
):
|
||||
config = BaseLlmConfig(
|
||||
model=MODEL,
|
||||
temperature=TEMPERATURE,
|
||||
max_tokens=MAX_TOKENS,
|
||||
top_p=TOP_P,
|
||||
api_key="test",
|
||||
http_client_proxies="http://testproxy.mem0.net:8000",
|
||||
azure_kwargs={"api_key": "test"},
|
||||
)
|
||||
|
||||
_ = AzureOpenAILLM(config)
|
||||
|
||||
@@ -114,6 +118,6 @@ def test_generate_with_http_proxies():
|
||||
http_client=mock_http_client_instance,
|
||||
azure_deployment=None,
|
||||
azure_endpoint=None,
|
||||
api_version=None
|
||||
api_version=None,
|
||||
)
|
||||
mock_http_client.assert_called_once_with(proxies="http://testproxy.mem0.net:8000")
|
||||
|
||||
@@ -8,7 +8,7 @@ from mem0.llms.groq import GroqLLM
|
||||
|
||||
@pytest.fixture
|
||||
def mock_groq_client():
|
||||
with patch('mem0.llms.groq.Groq') as mock_groq:
|
||||
with patch("mem0.llms.groq.Groq") as mock_groq:
|
||||
mock_client = Mock()
|
||||
mock_groq.return_value = mock_client
|
||||
yield mock_client
|
||||
@@ -19,9 +19,9 @@ def test_generate_response_without_tools(mock_groq_client):
|
||||
llm = GroqLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||
mock_groq_client.chat.completions.create.return_value = mock_response
|
||||
@@ -29,11 +29,7 @@ def test_generate_response_without_tools(mock_groq_client):
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_groq_client.chat.completions.create.assert_called_once_with(
|
||||
model="llama3-70b-8192",
|
||||
messages=messages,
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
top_p=1.0
|
||||
model="llama3-70b-8192", messages=messages, temperature=0.7, max_tokens=100, top_p=1.0
|
||||
)
|
||||
assert response == "I'm doing well, thank you for asking!"
|
||||
|
||||
@@ -43,7 +39,7 @@ def test_generate_response_with_tools(mock_groq_client):
|
||||
llm = GroqLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."},
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
@@ -53,23 +49,21 @@ def test_generate_response_with_tools(mock_groq_client):
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"type": "string", "description": "Data to add to memory"}
|
||||
},
|
||||
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_message = Mock()
|
||||
mock_message.content = "I've added the memory for you."
|
||||
|
||||
|
||||
mock_tool_call = Mock()
|
||||
mock_tool_call.function.name = "add_memory"
|
||||
mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
|
||||
|
||||
|
||||
mock_message.tool_calls = [mock_tool_call]
|
||||
mock_response.choices = [Mock(message=mock_message)]
|
||||
mock_groq_client.chat.completions.create.return_value = mock_response
|
||||
@@ -83,11 +77,10 @@ def test_generate_response_with_tools(mock_groq_client):
|
||||
max_tokens=100,
|
||||
top_p=1.0,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
tool_choice="auto",
|
||||
)
|
||||
|
||||
|
||||
assert response["content"] == "I've added the memory for you."
|
||||
assert len(response["tool_calls"]) == 1
|
||||
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
|
||||
|
||||
assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}
|
||||
|
||||
@@ -8,14 +8,15 @@ from mem0.llms import litellm
|
||||
|
||||
@pytest.fixture
|
||||
def mock_litellm():
|
||||
with patch('mem0.llms.litellm.litellm') as mock_litellm:
|
||||
with patch("mem0.llms.litellm.litellm") as mock_litellm:
|
||||
yield mock_litellm
|
||||
|
||||
|
||||
def test_generate_response_with_unsupported_model(mock_litellm):
|
||||
config = BaseLlmConfig(model="unsupported-model", temperature=0.7, max_tokens=100, top_p=1)
|
||||
llm = litellm.LiteLLM(config)
|
||||
messages = [{"role": "user", "content": "Hello"}]
|
||||
|
||||
|
||||
mock_litellm.supports_function_calling.return_value = False
|
||||
|
||||
with pytest.raises(ValueError, match="Model 'unsupported-model' in litellm does not support function calling."):
|
||||
@@ -27,9 +28,9 @@ def test_generate_response_without_tools(mock_litellm):
|
||||
llm = litellm.LiteLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||
mock_litellm.completion.return_value = mock_response
|
||||
@@ -38,11 +39,7 @@ def test_generate_response_without_tools(mock_litellm):
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_litellm.completion.assert_called_once_with(
|
||||
model="gpt-4o",
|
||||
messages=messages,
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
top_p=1.0
|
||||
model="gpt-4o", messages=messages, temperature=0.7, max_tokens=100, top_p=1.0
|
||||
)
|
||||
assert response == "I'm doing well, thank you for asking!"
|
||||
|
||||
@@ -52,7 +49,7 @@ def test_generate_response_with_tools(mock_litellm):
|
||||
llm = litellm.LiteLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."},
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
@@ -62,23 +59,21 @@ def test_generate_response_with_tools(mock_litellm):
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"type": "string", "description": "Data to add to memory"}
|
||||
},
|
||||
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_message = Mock()
|
||||
mock_message.content = "I've added the memory for you."
|
||||
|
||||
|
||||
mock_tool_call = Mock()
|
||||
mock_tool_call.function.name = "add_memory"
|
||||
mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
|
||||
|
||||
|
||||
mock_message.tool_calls = [mock_tool_call]
|
||||
mock_response.choices = [Mock(message=mock_message)]
|
||||
mock_litellm.completion.return_value = mock_response
|
||||
@@ -87,16 +82,10 @@ def test_generate_response_with_tools(mock_litellm):
|
||||
response = llm.generate_response(messages, tools=tools)
|
||||
|
||||
mock_litellm.completion.assert_called_once_with(
|
||||
model="gpt-4o",
|
||||
messages=messages,
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
top_p=1,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
model="gpt-4o", messages=messages, temperature=0.7, max_tokens=100, top_p=1, tools=tools, tool_choice="auto"
|
||||
)
|
||||
|
||||
|
||||
assert response["content"] == "I've added the memory for you."
|
||||
assert len(response["tool_calls"]) == 1
|
||||
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
|
||||
assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}
|
||||
|
||||
@@ -9,61 +9,48 @@ from mem0.llms.utils.tools import ADD_MEMORY_TOOL
|
||||
|
||||
@pytest.fixture
|
||||
def mock_ollama_client():
|
||||
with patch('mem0.llms.ollama.Client') as mock_ollama:
|
||||
with patch("mem0.llms.ollama.Client") as mock_ollama:
|
||||
mock_client = Mock()
|
||||
mock_client.list.return_value = {"models": [{"name": "llama3.1:70b"}]}
|
||||
mock_ollama.return_value = mock_client
|
||||
yield mock_client
|
||||
|
||||
|
||||
def test_generate_response_without_tools(mock_ollama_client):
|
||||
config = BaseLlmConfig(model="llama3.1:70b", temperature=0.7, max_tokens=100, top_p=1.0)
|
||||
llm = OllamaLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
]
|
||||
|
||||
mock_response = {
|
||||
'message': {"content": "I'm doing well, thank you for asking!"}
|
||||
}
|
||||
|
||||
mock_response = {"message": {"content": "I'm doing well, thank you for asking!"}}
|
||||
mock_ollama_client.chat.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_ollama_client.chat.assert_called_once_with(
|
||||
model="llama3.1:70b",
|
||||
messages=messages,
|
||||
options={
|
||||
"temperature": 0.7,
|
||||
"num_predict": 100,
|
||||
"top_p": 1.0
|
||||
}
|
||||
model="llama3.1:70b", messages=messages, options={"temperature": 0.7, "num_predict": 100, "top_p": 1.0}
|
||||
)
|
||||
assert response == "I'm doing well, thank you for asking!"
|
||||
|
||||
|
||||
def test_generate_response_with_tools(mock_ollama_client):
|
||||
config = BaseLlmConfig(model="llama3.1:70b", temperature=0.7, max_tokens=100, top_p=1.0)
|
||||
llm = OllamaLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."},
|
||||
]
|
||||
tools = [ADD_MEMORY_TOOL]
|
||||
|
||||
|
||||
mock_response = {
|
||||
'message': {
|
||||
"message": {
|
||||
"content": "I've added the memory for you.",
|
||||
"tool_calls": [
|
||||
{
|
||||
"function": {
|
||||
"name": "add_memory",
|
||||
"arguments": {"data": "Today is a sunny day."}
|
||||
}
|
||||
}
|
||||
]
|
||||
"tool_calls": [{"function": {"name": "add_memory", "arguments": {"data": "Today is a sunny day."}}}],
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
mock_ollama_client.chat.return_value = mock_response
|
||||
|
||||
response = llm.generate_response(messages, tools=tools)
|
||||
@@ -71,16 +58,11 @@ def test_generate_response_with_tools(mock_ollama_client):
|
||||
mock_ollama_client.chat.assert_called_once_with(
|
||||
model="llama3.1:70b",
|
||||
messages=messages,
|
||||
options={
|
||||
"temperature": 0.7,
|
||||
"num_predict": 100,
|
||||
"top_p": 1.0
|
||||
},
|
||||
tools=tools
|
||||
options={"temperature": 0.7, "num_predict": 100, "top_p": 1.0},
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
|
||||
assert response["content"] == "I've added the memory for you."
|
||||
assert len(response["tool_calls"]) == 1
|
||||
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
|
||||
|
||||
assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}
|
||||
|
||||
@@ -8,7 +8,7 @@ from mem0.llms.openai import OpenAILLM
|
||||
|
||||
@pytest.fixture
|
||||
def mock_openai_client():
|
||||
with patch('mem0.llms.openai.OpenAI') as mock_openai:
|
||||
with patch("mem0.llms.openai.OpenAI") as mock_openai:
|
||||
mock_client = Mock()
|
||||
mock_openai.return_value = mock_client
|
||||
yield mock_client
|
||||
@@ -19,9 +19,9 @@ def test_generate_response_without_tools(mock_openai_client):
|
||||
llm = OpenAILLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||
mock_openai_client.chat.completions.create.return_value = mock_response
|
||||
@@ -29,11 +29,7 @@ def test_generate_response_without_tools(mock_openai_client):
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_openai_client.chat.completions.create.assert_called_once_with(
|
||||
model="gpt-4o",
|
||||
messages=messages,
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
top_p=1.0
|
||||
model="gpt-4o", messages=messages, temperature=0.7, max_tokens=100, top_p=1.0
|
||||
)
|
||||
assert response == "I'm doing well, thank you for asking!"
|
||||
|
||||
@@ -43,7 +39,7 @@ def test_generate_response_with_tools(mock_openai_client):
|
||||
llm = OpenAILLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."},
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
@@ -53,23 +49,21 @@ def test_generate_response_with_tools(mock_openai_client):
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"type": "string", "description": "Data to add to memory"}
|
||||
},
|
||||
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_message = Mock()
|
||||
mock_message.content = "I've added the memory for you."
|
||||
|
||||
|
||||
mock_tool_call = Mock()
|
||||
mock_tool_call.function.name = "add_memory"
|
||||
mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
|
||||
|
||||
|
||||
mock_message.tool_calls = [mock_tool_call]
|
||||
mock_response.choices = [Mock(message=mock_message)]
|
||||
mock_openai_client.chat.completions.create.return_value = mock_response
|
||||
@@ -77,17 +71,10 @@ def test_generate_response_with_tools(mock_openai_client):
|
||||
response = llm.generate_response(messages, tools=tools)
|
||||
|
||||
mock_openai_client.chat.completions.create.assert_called_once_with(
|
||||
model="gpt-4o",
|
||||
messages=messages,
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
top_p=1.0,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
model="gpt-4o", messages=messages, temperature=0.7, max_tokens=100, top_p=1.0, tools=tools, tool_choice="auto"
|
||||
)
|
||||
|
||||
|
||||
assert response["content"] == "I've added the memory for you."
|
||||
assert len(response["tool_calls"]) == 1
|
||||
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
|
||||
|
||||
assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}
|
||||
|
||||
@@ -8,7 +8,7 @@ from mem0.llms.together import TogetherLLM
|
||||
|
||||
@pytest.fixture
|
||||
def mock_together_client():
|
||||
with patch('mem0.llms.together.Together') as mock_together:
|
||||
with patch("mem0.llms.together.Together") as mock_together:
|
||||
mock_client = Mock()
|
||||
mock_together.return_value = mock_client
|
||||
yield mock_client
|
||||
@@ -19,9 +19,9 @@ def test_generate_response_without_tools(mock_together_client):
|
||||
llm = TogetherLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello, how are you?"}
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_response.choices = [Mock(message=Mock(content="I'm doing well, thank you for asking!"))]
|
||||
mock_together_client.chat.completions.create.return_value = mock_response
|
||||
@@ -29,11 +29,7 @@ def test_generate_response_without_tools(mock_together_client):
|
||||
response = llm.generate_response(messages)
|
||||
|
||||
mock_together_client.chat.completions.create.assert_called_once_with(
|
||||
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
messages=messages,
|
||||
temperature=0.7,
|
||||
max_tokens=100,
|
||||
top_p=1.0
|
||||
model="mistralai/Mixtral-8x7B-Instruct-v0.1", messages=messages, temperature=0.7, max_tokens=100, top_p=1.0
|
||||
)
|
||||
assert response == "I'm doing well, thank you for asking!"
|
||||
|
||||
@@ -43,7 +39,7 @@ def test_generate_response_with_tools(mock_together_client):
|
||||
llm = TogetherLLM(config)
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."}
|
||||
{"role": "user", "content": "Add a new memory: Today is a sunny day."},
|
||||
]
|
||||
tools = [
|
||||
{
|
||||
@@ -53,23 +49,21 @@ def test_generate_response_with_tools(mock_together_client):
|
||||
"description": "Add a memory",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"data": {"type": "string", "description": "Data to add to memory"}
|
||||
},
|
||||
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
|
||||
"required": ["data"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
mock_response = Mock()
|
||||
mock_message = Mock()
|
||||
mock_message.content = "I've added the memory for you."
|
||||
|
||||
|
||||
mock_tool_call = Mock()
|
||||
mock_tool_call.function.name = "add_memory"
|
||||
mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
|
||||
|
||||
|
||||
mock_message.tool_calls = [mock_tool_call]
|
||||
mock_response.choices = [Mock(message=mock_message)]
|
||||
mock_together_client.chat.completions.create.return_value = mock_response
|
||||
@@ -83,11 +77,10 @@ def test_generate_response_with_tools(mock_together_client):
|
||||
max_tokens=100,
|
||||
top_p=1.0,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
tool_choice="auto",
|
||||
)
|
||||
|
||||
|
||||
assert response["content"] == "I've added the memory for you."
|
||||
assert len(response["tool_calls"]) == 1
|
||||
assert response["tool_calls"][0]["name"] == "add_memory"
|
||||
assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
|
||||
|
||||
assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}
|
||||
|
||||
Reference in New Issue
Block a user