[Docs]: Add Integration for 🧊 Helicone (LLM-Observability for Developers) (#1458)

This commit is contained in:
Stefan Bokarev
2024-07-06 12:27:57 -07:00
committed by GitHub
parent bbe56107fb
commit 4f119692f1
3 changed files with 66 additions and 21 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 329 KiB

View File

@@ -0,0 +1,52 @@
---
title: "🧊 Helicone"
description: "Implement Helicone, the open-source LLM observability platform, with Embedchain. Monitor, debug, and optimize your AI applications effortlessly."
"twitter:title": "Helicone LLM Observability for Embedchain"
---
Get started with [Helicone](https://www.helicone.ai/), the open-source LLM observability platform for developers to monitor, debug, and optimize their applications.
To use Helicone, you need to do the following steps.
## Integration Steps
<Steps>
<Step title="Create an account + Generate an API Key">
Log into [Helicone](https://www.helicone.ai) or create an account. Once you have an account, you
can generate an [API key](https://helicone.ai/developer).
<Note>
Make sure to generate a [write only API key](helicone-headers/helicone-auth).
</Note>
</Step>
<Step title="Set base_url in the your code">
You can configure your base_url and OpenAI API key in your codebase
<CodeGroup>
```python main.py
import os
from embedchain import App
# Modify the base path and add a Helicone URL
os.environ["OPENAI_API_BASE"] = "https://oai.helicone.ai/{YOUR_HELICONE_API_KEY}/v1"
# Add your OpenAI API Key
os.environ["OPENAI_API_KEY"] = "{YOUR_OPENAI_API_KEY}"
app = App()
# Add data to your app
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
# Query your app
print(app.query("How many companies did Elon found? Which companies?"))
```
</CodeGroup>
</Step>
<Step title="Now you can see all passing requests through Embedchain in Helicone">
<img src="/images/helicone-embedchain.png" alt="Embedchain requests" />
</Step>
</Steps>
Check out [Helicone](https://www.helicone.ai) to see more use cases!

View File

@@ -19,9 +19,7 @@
"modeToggle": { "modeToggle": {
"default": "dark" "default": "dark"
}, },
"openapi": [ "openapi": ["/rest-api.json"],
"/rest-api.json"
],
"metadata": { "metadata": {
"og:image": "/images/og.png", "og:image": "/images/og.png",
"twitter:site": "@embedchain" "twitter:site": "@embedchain"
@@ -70,7 +68,8 @@
"integration/langsmith", "integration/langsmith",
"integration/chainlit", "integration/chainlit",
"integration/streamlit-mistral", "integration/streamlit-mistral",
"integration/openlit" "integration/openlit",
"integration/helicone"
] ]
} }
] ]
@@ -132,13 +131,13 @@
{ {
"group": "🗄️ Vector databases", "group": "🗄️ Vector databases",
"pages": [ "pages": [
"components/vector-databases/chromadb", "components/vector-databases/chromadb",
"components/vector-databases/elasticsearch", "components/vector-databases/elasticsearch",
"components/vector-databases/pinecone", "components/vector-databases/pinecone",
"components/vector-databases/opensearch", "components/vector-databases/opensearch",
"components/vector-databases/qdrant", "components/vector-databases/qdrant",
"components/vector-databases/weaviate", "components/vector-databases/weaviate",
"components/vector-databases/zilliz" "components/vector-databases/zilliz"
] ]
}, },
"components/llms", "components/llms",
@@ -161,9 +160,7 @@
}, },
{ {
"group": "Community", "group": "Community",
"pages": [ "pages": ["community/connect-with-us"]
"community/connect-with-us"
]
}, },
{ {
"group": "Examples", "group": "Examples",
@@ -203,9 +200,7 @@
}, },
{ {
"group": "Showcase", "group": "Showcase",
"pages": [ "pages": ["examples/showcase"]
"examples/showcase"
]
}, },
{ {
"group": "API Reference", "group": "API Reference",
@@ -241,9 +236,7 @@
}, },
{ {
"group": "Product", "group": "Product",
"pages": [ "pages": ["product/release-notes"]
"product/release-notes"
]
} }
], ],
"footerSocials": { "footerSocials": {