Renamed apps/CustomApp.py to follow snake case convention (#678)
This commit is contained in:
83
embedchain/apps/custom_app.py
Normal file
83
embedchain/apps/custom_app.py
Normal file
@@ -0,0 +1,83 @@
|
||||
from typing import Optional
|
||||
|
||||
from embedchain.config import CustomAppConfig
|
||||
from embedchain.embedchain import EmbedChain
|
||||
from embedchain.embedder.base import BaseEmbedder
|
||||
from embedchain.helper.json_serializable import register_deserializable
|
||||
from embedchain.llm.base import BaseLlm
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class CustomApp(EmbedChain):
|
||||
"""
|
||||
Embedchain's custom app allows for most flexibility.
|
||||
|
||||
You can craft your own mix of various LLMs, vector databases and embedding model/functions.
|
||||
|
||||
Methods:
|
||||
add(source, data_type): adds the data from the given URL to the vector db.
|
||||
query(query): finds answer to the given query using vector database and LLM.
|
||||
chat(query): finds answer to the given query using vector database and LLM, with conversation history.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[CustomAppConfig] = None,
|
||||
llm: BaseLlm = None,
|
||||
db: BaseVectorDB = None,
|
||||
embedder: BaseEmbedder = None,
|
||||
system_prompt: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Initialize a new `CustomApp` instance. You have to choose a LLM, database and embedder.
|
||||
|
||||
:param config: Config for the app instance. This is the most basic configuration,
|
||||
that does not fall into the LLM, database or embedder category, defaults to None
|
||||
:type config: Optional[CustomAppConfig], optional
|
||||
:param llm: LLM Class instance. example: `from embedchain.llm.openai import OpenAILlm`, defaults to None
|
||||
:type llm: BaseLlm
|
||||
:param db: The database to use for storing and retrieving embeddings,
|
||||
example: `from embedchain.vectordb.chroma_db import ChromaDb`, defaults to None
|
||||
:type db: BaseVectorDB
|
||||
:param embedder: The embedder (embedding model and function) use to calculate embeddings.
|
||||
example: `from embedchain.embedder.gpt4all_embedder import GPT4AllEmbedder`, defaults to None
|
||||
:type embedder: BaseEmbedder
|
||||
:param system_prompt: System prompt that will be provided to the LLM as such, defaults to None
|
||||
:type system_prompt: Optional[str], optional
|
||||
:raises ValueError: LLM, database or embedder has not been defined.
|
||||
:raises TypeError: LLM, database or embedder is not a valid class instance.
|
||||
"""
|
||||
# Config is not required, it has a default
|
||||
if config is None:
|
||||
config = CustomAppConfig()
|
||||
|
||||
if llm is None:
|
||||
raise ValueError("LLM must be provided for custom app. Please import from `embedchain.llm`.")
|
||||
if db is None:
|
||||
raise ValueError("Database must be provided for custom app. Please import from `embedchain.vectordb`.")
|
||||
if embedder is None:
|
||||
raise ValueError("Embedder must be provided for custom app. Please import from `embedchain.embedder`.")
|
||||
|
||||
if not isinstance(config, CustomAppConfig):
|
||||
raise TypeError(
|
||||
"Config is not a `CustomAppConfig` instance. "
|
||||
"Please make sure the type is right and that you are passing an instance."
|
||||
)
|
||||
if not isinstance(llm, BaseLlm):
|
||||
raise TypeError(
|
||||
"LLM is not a `BaseLlm` instance. "
|
||||
"Please make sure the type is right and that you are passing an instance."
|
||||
)
|
||||
if not isinstance(db, BaseVectorDB):
|
||||
raise TypeError(
|
||||
"Database is not a `BaseVectorDB` instance. "
|
||||
"Please make sure the type is right and that you are passing an instance."
|
||||
)
|
||||
if not isinstance(embedder, BaseEmbedder):
|
||||
raise TypeError(
|
||||
"Embedder is not a `BaseEmbedder` instance. "
|
||||
"Please make sure the type is right and that you are passing an instance."
|
||||
)
|
||||
|
||||
super().__init__(config=config, llm=llm, db=db, embedder=embedder, system_prompt=system_prompt)
|
||||
Reference in New Issue
Block a user