[docs]: Revamp embedchain docs (#799)

This commit is contained in:
Deshraj Yadav
2023-10-13 15:38:15 -07:00
committed by GitHub
parent a86d7f52e9
commit 4a8c50f886
68 changed files with 1175 additions and 673 deletions

8
configs/anthropic.yaml Normal file
View File

@@ -0,0 +1,8 @@
llm:
provider: anthropic
model: 'claude-instant-1'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false

7
configs/cohere.yaml Normal file
View File

@@ -0,0 +1,7 @@
llm:
provider: cohere
model: large
config:
temperature: 0.5
max_tokens: 1000
top_p: 1

35
configs/full-stack.yaml Normal file
View File

@@ -0,0 +1,35 @@
app:
config:
id: 'full-stack-app'
llm:
provider: openai
model: 'gpt-3.5-turbo'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
template: |
Use the following pieces of context to answer the query at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
$context
Query: $query
Helpful Answer:
system_prompt: |
Act as William Shakespeare. Answer the following questions in the style of William Shakespeare.
vectordb:
provider: chroma
config:
collection_name: 'full-stack-app'
dir: db
allow_reset: true
embedder:
provider: openai
config:
model: 'text-embedding-ada-002'

13
configs/gpt4all.yaml Normal file
View File

@@ -0,0 +1,13 @@
llm:
provider: gpt4all
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: gpt4all
config:
model: 'all-MiniLM-L6-v2'

8
configs/huggingface.yaml Normal file
View File

@@ -0,0 +1,8 @@
llm:
provider: huggingface
model: 'google/flan-t5-xxl'
config:
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false

7
configs/jina.yaml Normal file
View File

@@ -0,0 +1,7 @@
llm:
provider: jina
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false

8
configs/llama2.yaml Normal file
View File

@@ -0,0 +1,8 @@
llm:
provider: llama2
model: 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'
config:
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false

6
configs/vertexai.yaml Normal file
View File

@@ -0,0 +1,6 @@
llm:
provider: vertexai
model: 'chat-bison'
config:
temperature: 0.5
top_p: 0.5

10
docs/Makefile Normal file
View File

@@ -0,0 +1,10 @@
install:
npm i -g mintlify
run_local:
mintlify dev
troubleshoot:
mintlify install
.PHONY: install run_local troubleshoot

View File

@@ -0,0 +1,11 @@
<CardGroup cols={3}>
<Card title="Slack" icon="slack" href="https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw" color="#4A154B">
Join our slack community
</Card>
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
Join our discord community
</Card>
<Card title="Schedule a call" icon="calendar" href="https://cal.com/taranjeetio/ec">
Schedule a call with Embedchain founder
</Card>
</CardGroup>

View File

@@ -0,0 +1,18 @@
<Tip>
If you can't find the specific data source, please feel free to request through one of the following channels and help us prioritize.
<CardGroup cols={2}>
<Card title="Slack" icon="slack" href="https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw" color="#4A154B">
Let us know on our slack community
</Card>
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
Let us know on discord community
</Card>
<Card title="GitHub" icon="github" href="https://github.com/embedchain/embedchain/issues/new?assignees=&labels=&projects=&template=feature_request.yml" color="#181717">
Open an issue on our GitHub
</Card>
<Card title="Schedule a call" icon="calendar" href="https://cal.com/taranjeetio/ec">
Schedule a call with Embedchain founder
</Card>
</CardGroup>
</Tip>

View File

@@ -0,0 +1,18 @@
<Tip>
If you can't find the specific LLM you need, no need to fret. We're continuously expanding our support for additional LLMs, and you can help us prioritize by opening an issue on our GitHub or simply reaching out to us on our Slack or Discord community.
<CardGroup cols={2}>
<Card title="Slack" icon="slack" href="https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw" color="#4A154B">
Let us know on our slack community
</Card>
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
Let us know on discord community
</Card>
<Card title="GitHub" icon="github" href="https://github.com/embedchain/embedchain/issues/new?assignees=&labels=&projects=&template=feature_request.yml" color="#181717">
Open an issue on our GitHub
</Card>
<Card title="Schedule a call" icon="calendar" href="https://cal.com/taranjeetio/ec">
Schedule a call with Embedchain founder
</Card>
</CardGroup>
</Tip>

View File

@@ -0,0 +1,18 @@
<Tip>
If you can't find the specific vector database, please feel free to request through one of the following channels and help us prioritize.
<CardGroup cols={2}>
<Card title="Slack" icon="slack" href="https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw" color="#4A154B">
Let us know on our slack community
</Card>
<Card title="Discord" icon="discord" href="https://discord.gg/6PzXDgEjG5" color="#7289DA">
Let us know on discord community
</Card>
<Card title="GitHub" icon="github" href="https://github.com/embedchain/embedchain/issues/new?assignees=&labels=&projects=&template=feature_request.yml" color="#181717">
Open an issue on our GitHub
</Card>
<Card title="Schedule a call" icon="calendar" href="https://cal.com/taranjeetio/ec">
Schedule a call with Embedchain founder
</Card>
</CardGroup>
</Tip>

View File

@@ -1,215 +0,0 @@
---
title: '📱 App types'
---
## App Types
Embedchain supports a variety of LLMs, embedding functions/models and vector databases.
Our app gives you full control over which components you want to use, you can mix and match them to your hearts content.
<Tip>
Out of the box, if you just use `app = App()`, Embedchain uses what we believe to be the best configuration available. This might include paid/proprietary components. Currently, this is
* LLM: OpenAi (gpt-3.5-turbo)
* Embedder: OpenAi (text-embedding-ada-002)
* Database: ChromaDB
</Tip>
### LLM
#### Choosing an LLM
The following LLM providers are supported by Embedchain:
- OPENAI
- ANTHPROPIC
- VERTEX_AI
- GPT4ALL
- AZURE_OPENAI
- LLAMA2
- JINA
- COHERE
You can choose one by importing it from `embedchain.llm`. E.g.:
```python
from embedchain import App
from embedchain.llm.llama2 import Llama2Llm
app = App(llm=Llama2Llm())
```
#### Configuration
The LLMs can be configured by passing an LlmConfig object.
The config options can be found [here](/advanced/query_configuration#llmconfig)
```python
from embedchain import App
from embedchain.llm.llama2 import Llama2Llm
from embedchain.config import LlmConfig
app = App(llm=Llama2Llm(), llm_config=LlmConfig(number_documents=3, temperature=0))
```
### Embedder
#### Choosing an Embedder
The following providers for embedding functions are supported by Embedchain:
- OPENAI
- HUGGING_FACE
- VERTEX_AI
- GPT4ALL
- AZURE_OPENAI
You can choose one by importing it from `embedchain.embedder`. E.g.:
```python
from embedchain import App
from embedchain.embedder.vertexai import VertexAiEmbedder
app = App(embedder=VertexAiEmbedder())
```
#### Configuration
The LLMs can be configured by passing an EmbedderConfig object.
```python
from embedchain import App
from embedchain.embedder.openai import OpenAiEmbedder
from embedchain.config import EmbedderConfig
app = App(embedder=OpenAiEmbedder(), embedder_config=EmbedderConfig(model="text-embedding-ada-002"))
```
<Tip>
You can also pass an `LlmConfig` instance directly to the `query` or `chat` method.
This creates a temporary config for that request alone, so you could, for example, use a different model (from the same provider) or get more context documents for a specific query.
</Tip>
### Vector Database
#### Choosing a Vector Database
The following vector databases are supported by Embedchain:
- ChromaDB
- Elasticsearch
You can choose one by importing it from `embedchain.vectordb`. E.g.:
```python
from embedchain import App
from embedchain.vectordb.elasticsearch import ElasticsearchDB
app = App(db=ElasticsearchDB())
```
#### Configuration
The vector databases can be configured by passing a specific config object.
These vary greatly between the different vector databases.
```python
from embedchain import App
from embedchain.vectordb.elasticsearch import ElasticsearchDB
from embedchain.config import ElasticsearchDBConfig
app = App(db=ElasticsearchDB(), db_config=ElasticsearchDBConfig())
```
### PersonApp
```python
from embedchain import PersonApp
naval_chat_bot = PersonApp("name_of_person_or_character") #Like "Yoda"
```
- `PersonApp` uses OpenAI's model, so these are paid models. 💸 You will be charged for embedding model usage and LLM usage.
- `PersonApp` uses OpenAI's embedding model to create embeddings for chunks and ChatGPT API as LLM to get answer given the relevant docs. Make sure that you have an OpenAI account and an API key. If you don't have an API key, you can create one by visiting [this link](https://platform.openai.com/account/api-keys).
- Once you have the API key, set it in an environment variable called `OPENAI_API_KEY`
```python
import os
os.environ["OPENAI_API_KEY"] = "sk-xxxx"
```
### Full Configuration Examples
Embedchain previously offered fully configured classes, namely `App`, `OpenSourceApp`, `CustomApp` and `Llama2App`.
We deprecated these apps. The reason for this decision was that it was hard to switch from to a different LLM, embedder or vector db, if you one day decided that that's what you want to do.
The new app allows drop-in replacements, such as changing `App(llm=OpenAiLlm())` to `App(llm=Llama2Llm())`.
To make the switch to our new, fully configurable app easier, we provide you with full examples for what the old classes would look like implemented as a new app.
You can swap these in, and if you decide you want to try a different model one day, you don't have to rewrite your whole bot.
#### App
App without any configuration is still using the best options available, so you can keep using:
```python
from embedchain import App
app = App()
```
#### OpenSourceApp
Use this snippet to run an open source app.
```python
from embedchain import App
from embedchain.llm.gpt4all import GPT4ALLLlm
from embedchain.embedder.gpt4all import GPT4AllEmbedder
from embedchain.vectordb.chroma import ChromaDB
app = App(llm=GPT4ALLLlm(), embedder=GPT4AllEmbedder(), db=ChromaDB())
```
#### Llama2App
```python
from embedchain import App
from embedchain.llm.llama2 import Llama2Llm
app = App(llm=Llama2Llm())
```
#### CustomApp
Every app is a custom app now.
If you were previously using a `CustomApp`, you can now just change it to `App`.
Here's one example, what you could do if we combined everything shown on this page.
```python
from embedchain import App
from embedchain.config import ElasticsearchDBConfig, EmbedderConfig, LlmConfig
from embedchain.embedder.openai import OpenAiEmbedder
from embedchain.llm.llama2 import Llama2Llm
from embedchain.vectordb.elasticsearch import ElasticsearchDB
app = App(
llm=Llama2Llm(),
llm_config=LlmConfig(number_documents=3, temperature=0),
embedder=OpenAiEmbedder(),
embedder_config=EmbedderConfig(model="text-embedding-ada-002"),
db=ElasticsearchDB(),
db_config=ElasticsearchDBConfig(),
)
```
### Compatibility with other apps
- If there is any other app instance in your script or app, you can change the import as
```python
from embedchain import App as EmbedChainApp
from embedchain import PersonApp as EmbedChainPersonApp
# or
from embedchain import App as ECApp
from embedchain import PersonApp as ECPApp
```

View File

@@ -4,101 +4,72 @@ title: '⚙️ Custom configurations'
Embedchain is made to work out of the box. However, for advanced users we're also offering configuration options. All of these configuration options are optional and have sane defaults.
## Concept
The main `App` class is available in the following varieties: `CustomApp`, `OpenSourceApp` and `Llama2App` and `App`. The first is fully configurable, the others are opinionated in some aspects.
You can configure different components of your app (`llm`, `embedding model`, or `vector database`) through a simple yaml configuration that Embedchain offers. Here is a generic full-stack example of the yaml config:
The `App` class has three subclasses: `llm`, `db` and `embedder`. These are the core ingredients that make up an EmbedChain app.
App plus each one of the subclasses have a `config` attribute.
You can pass a `Config` instance as an argument during initialization to persistently configure a class.
These configs can be imported from `embedchain.config`
```yaml
app:
config:
id: 'full-stack-app'
There are `set` methods for some things that should not (only) be set at start-up, like `app.db.set_collection_name`.
llm:
provider: openai
model: 'gpt-3.5-turbo'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
template: |
Use the following pieces of context to answer the query at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
## Examples
$context
### General
Query: $query
Here's the readme example with configuration options.
Helpful Answer:
system_prompt: |
Act as William Shakespeare. Answer the following questions in the style of William Shakespeare.
```python
from embedchain import App
from embedchain.config import AppConfig, AddConfig, LlmConfig, ChunkerConfig
vectordb:
provider: chroma
config:
collection_name: 'full-stack-app'
dir: db
allow_reset: true
# Example: set the log level for debugging
config = AppConfig(log_level="DEBUG")
naval_chat_bot = App(config)
# Example: specify a custom collection name
naval_chat_bot.db.set_collection_name("naval_chat_bot")
# Example: define your own chunker config for `youtube_video`
chunker_config = ChunkerConfig(chunk_size=1000, chunk_overlap=100, length_function=len)
# Example: Add your chunker config to an AddConfig to actually use it
add_config = AddConfig(chunker=chunker_config)
naval_chat_bot.add("https://www.youtube.com/watch?v=3qHkcs3kG44", config=add_config)
# Example: Reset to default
add_config = AddConfig()
naval_chat_bot.add("https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf", config=add_config)
naval_chat_bot.add("https://nav.al/feedback", config=add_config)
naval_chat_bot.add("https://nav.al/agi", config=add_config)
naval_chat_bot.add(("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor."), config=add_config)
# Change the number of documents.
query_config = LlmConfig(number_documents=5)
print(naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?", config=query_config))
embedder:
provider: openai
config:
model: 'text-embedding-ada-002'
```
### Custom prompt template
Alright, let's dive into what each key means in the yaml config above:
Here's the example of using custom prompt template with `.query`
1. `app` Section:
- `config`:
- `id` (String): The ID or name of your full-stack application.
2. `llm` Section:
- `provider` (String): The provider for the language model, which is set to 'openai'. You can find the full list of llm providers in [our docs](/components/llms).
- `model` (String): The specific model being used, 'gpt-3.5-turbo'.
- `config`:
- `temperature` (Float): Controls the randomness of the model's output. A higher value (closer to 1) makes the output more random.
- `max_tokens` (Integer): Controls how many tokens are used in the response.
- `top_p` (Float): Controls the diversity of word selection. A higher value (closer to 1) makes word selection more diverse.
- `stream` (Boolean): Controls if the response is streamed back to the user (set to false).
- `template` (String): A custom template for the prompt that the model uses to generate responses.
- `system_prompt` (String): A system prompt for the model to follow when generating responses, in this case, it's set to the style of William Shakespeare.
3. `vectordb` Section:
- `provider` (String): The provider for the vector database, set to 'chroma'. You can find the full list of vector database providers in [our docs](/components/vector-databases).
- `config`:
- `collection_name` (String): The initial collection name for the database, set to 'full-stack-app'.
- `dir` (String): The directory for the database, set to 'db'.
- `allow_reset` (Boolean): Indicates whether resetting the database is allowed, set to true.
4. `embedder` Section:
- `provider` (String): The provider for the embedder, set to 'openai'. You can find the full list of embedding model providers in [our docs](/components/embedding-models).
- `config`:
- `model` (String): The specific model used for text embedding, 'text-embedding-ada-002'.
```python
from string import Template
If you have questions about the configuration above, please feel free to reach out to us using one of the following methods:
import wikipedia
from embedchain import App
from embedchain.config import LlmConfig
einstein_chat_bot = App()
# Embed Wikipedia page
page = wikipedia.page("Albert Einstein")
einstein_chat_bot.add(page.content)
# Example: use your own custom template with `$context` and `$query`
einstein_chat_template = Template(
"""
You are Albert Einstein, a German-born theoretical physicist,
widely ranked among the greatest and most influential scientists of all time.
Use the following information about Albert Einstein to respond to
the human's query acting as Albert Einstein.
Context: $context
Keep the response brief. If you don't know the answer, just say that you don't know, don't try to make up an answer.
Human: $query
Albert Einstein:"""
)
# Example: Use the template, also add a system prompt.
llm_config = LlmConfig(template=einstein_chat_template, system_prompt="You are Albert Einstein.")
queries = [
"Where did you complete your studies?",
"Why did you win nobel prize?",
"Why did you divorce your first wife?",
]
for query in queries:
response = einstein_chat_bot.query(query, config=llm_config)
print("Query: ", query)
print("Response: ", response)
# Output
# Query: Where did you complete your studies?
# Response: I completed my secondary education at the Argovian cantonal school in Aarau, Switzerland.
# Query: Why did you win nobel prize?
# Response: I won the Nobel Prize in Physics in 1921 for my services to Theoretical Physics, particularly for my discovery of the law of the photoelectric effect.
# Query: Why did you divorce your first wife?
# Response: We divorced due to living apart for five years.
```
<Snippet file="get-help.mdx" />

View File

@@ -1,75 +0,0 @@
---
title: '🤝 Interface types'
---
## Interface Types
The embedchain app exposes the following methods.
### Query Interface
- This interface is like a question answering bot. It takes a question and gets the answer. It does not maintain context about the previous chats.❓
- To use this, call `.query()` function to get the answer for any query.
```python
print(naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?"))
# answer: Naval argues that humans possess the unique capacity to understand explanations or concepts to the maximum extent possible in this physical reality.
```
### Chat Interface
- This interface is a chat interface that remembers previous conversations. Right now it remembers 5 conversations by default. 💬
- To use this, call `.chat` function to get the answer for any query.
```python
print(naval_chat_bot.chat("How to be happy in life?"))
# answer: The most important trick to being happy is to realize happiness is a skill you develop and a choice you make. You choose to be happy, and then you work at it. It's just like building muscles or succeeding at your job. It's about recognizing the abundance and gifts around you at all times.
print(naval_chat_bot.chat("who is naval ravikant?"))
# answer: Naval Ravikant is an Indian-American entrepreneur and investor.
print(naval_chat_bot.chat("what did the author say about happiness?"))
# answer: The author, Naval Ravikant, believes that happiness is a choice you make and a skill you develop. He compares the mind to the body, stating that just as the body can be molded and changed, so can the mind. He emphasizes the importance of being present in the moment and not getting caught up in regrets of the past or worries about the future. By being present and grateful for where you are, you can experience true happiness.
```
#### Dry Run
Dry Run is an option in the `add`, `query` and `chat` methods that allows the user to display the data chunks and their constructed prompt which is not sent to the LLM, to save money. It's used for [testing](/advanced/testing#dry-run).
### Stream Response
- You can add config to your query method to stream responses like ChatGPT does. You would require a downstream handler to render the chunk in your desirable format. Supports both OpenAI model and OpenSourceApp. 📊
- To use this, instantiate a `LlmConfig` or `ChatConfig` object with `stream=True`. Then pass it to the `.chat()` or `.query()` method. The following example iterates through the chunks and prints them as they appear.
```python
app = App()
query_config = LlmConfig(stream = True)
resp = app.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?", query_config)
for chunk in resp:
print(chunk, end="", flush=True)
# answer: Naval argues that humans possess the unique capacity to understand explanations or concepts to the maximum extent possible in this physical reality.
```
### Other Methods
#### Reset
Resets the database and deletes all embeddings. Irreversible. Requires reinitialization afterwards.
```python
app.reset()
```
#### Count
Counts the number of embeddings (chunks) in the database.
```python
print(app.db.count())
# returns: 481
```

View File

@@ -49,11 +49,7 @@ Default values of chunker config parameters for different `data_type`:
|docs_site|500|50|len|
|notion|300|0|len|
### LoaderConfig
_coming soon_
## LlmConfig
## BaseLlmConfig
|option|description|type|default|
|---|---|---|---|
@@ -68,12 +64,3 @@ _coming soon_
|deployment_name|t.b.a.|str|None|
|system_prompt|System prompt string. Unused if none.|str|None|
|where|filter for context search.|dict|None|
## ChatConfig
All options for query and...
_coming soon_
`history` is not supported, as that is handled is handled automatically, the config option is not supported.

View File

@@ -0,0 +1,135 @@
---
title: 🧩 Embedding models
---
## Overview
Embedchain supports several embedding models from the following providers:
<CardGroup cols={4}>
<Card title="OpenAI" href="#openai"></Card>
<Card title="GPT4All" href="#gpt4all"></Card>
<Card title="Hugging Face" href="#hugging-face"></Card>
<Card title="Vertex AI" href="#vertex-ai"></Card>
</CardGroup>
## OpenAI
To use OpenAI embedding function, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
Once you have obtained the key, you can use it like this:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ['OPENAI_API_KEY'] = 'xxx'
# load embedding model configuration from openai.yaml file
app = App.from_config(yaml_path="openai.yaml")
app.add("https://en.wikipedia.org/wiki/OpenAI")
app.query("What is OpenAI?")
```
```yaml openai.yaml
embedder:
provider: openai
config:
model: 'text-embedding-ada-002'
```
</CodeGroup>
## GPT4ALL
GPT4All supports generating high quality embeddings of arbitrary length documents of text using a CPU optimized contrastively trained Sentence Transformer.
<CodeGroup>
```python main.py
from embedchain import App
# load embedding model configuration from gpt4all.yaml file
app = App.from_config(yaml_path="gpt4all.yaml")
```
```yaml gpt4all.yaml
llm:
provider: gpt4all
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: gpt4all
config:
model: 'all-MiniLM-L6-v2'
```
</CodeGroup>
## Hugging Face
Hugging Face supports generating embeddings of arbitrary length documents of text using Sentence Transformer library. Example of how to generate embeddings using hugging face is given below:
<CodeGroup>
```python main.py
from embedchain import App
# load embedding model configuration from huggingface.yaml file
app = App.from_config(yaml_path="huggingface.yaml")
```
```yaml huggingface.yaml
llm:
provider: huggingface
model: 'google/flan-t5-xxl'
config:
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false
embedder:
provider: huggingface
config:
model: 'sentence-transformers/all-mpnet-base-v2'
```
</CodeGroup>
## Vertex AI
Embedchain supports Google's VertexAI embeddings model through a simple interface. You just have to pass the `model_name` in the config yaml and it would work out of the box.
<CodeGroup>
```python main.py
from embedchain import App
# load embedding model configuration from vertexai.yaml file
app = App.from_config(yaml_path="vertexai.yaml")
```
```yaml vertexai.yaml
llm:
provider: vertexai
model: 'chat-bison'
config:
temperature: 0.5
top_p: 0.5
embedder:
provider: vertexai
config:
model: 'textembedding-gecko'
```
</CodeGroup>

280
docs/components/llms.mdx Normal file
View File

@@ -0,0 +1,280 @@
---
title: 🤖 Large language models (LLMs)
---
## Overview
Embedchain comes with built-in support for various popular large language models. We handle the complexity of integrating these models for you, allowing you to easily customize your language model interactions through a user-friendly interface.
<CardGroup cols={4}>
<Card title="OpenAI" href="#openai"></Card>
<Card title="Azure OpenAI" href="#azure-openai"></Card>
<Card title="Anthropic" href="#anthropic"></Card>
<Card title="Cohere" href="#cohere"></Card>
<Card title="GPT4All" href="#gpt4all"></Card>
<Card title="JinaChat" href="#jinachat"></Card>
<Card title="Hugging Face" href="#hugging-face"></Card>
<Card title="Llama2" href="#llama2"></Card>
<Card title="Vertex AI" href="#vertex-ai"></Card>
</CardGroup>
## OpenAI
To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
Once you have obtained the key, you can use it like this:
```python
import os
from embedchain import App
os.environ['OPENAI_API_KEY'] = 'xxx'
app = App()
app.add("https://en.wikipedia.org/wiki/OpenAI")
app.query("What is OpenAI?")
```
If you are looking to configure the different parameters of the LLM, you can do so by loading the app using a [yaml config](https://github.com/embedchain/embedchain/blob/main/embedchain/yaml/chroma.yaml) file.
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ['OPENAI_API_KEY'] = 'xxx'
# load llm configuration from openai.yaml file
app = App.from_config(yaml_path="openai.yaml")
```
```yaml openai.yaml
llm:
provider: openai
model: 'gpt-3.5-turbo'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
</CodeGroup>
## Azure OpenAI
_Coming soon_
## Anthropic
To use anthropic's model, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["ANTHROPIC_API_KEY"] = "xxx"
# load llm configuration from anthropic.yaml file
app = App.from_config(yaml_path="anthropic.yaml")
```
```yaml anthropic.yaml
llm:
provider: anthropic
model: 'claude-instant-1'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
</CodeGroup>
<br />
<Tip>
You may also have to set the `OPENAI_API_KEY` if you use the OpenAI's embedding model.
</Tip>
## Cohere
Set the `COHERE_API_KEY` as environment variable which you can find on their [Account settings page](https://dashboard.cohere.com/api-keys).
Once you have the API key, you are all set to use it with Embedchain.
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["COHERE_API_KEY"] = "xxx"
# load llm configuration from cohere.yaml file
app = App.from_config(yaml_path="cohere.yaml")
```
```yaml cohere.yaml
llm:
provider: cohere
model: large
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
```
</CodeGroup>
## GPT4ALL
GPT4all is a free-to-use, locally running, privacy-aware chatbot. No GPU or internet required. You can use this with Embedchain using the following code:
<CodeGroup>
```python main.py
from embedchain import App
# load llm configuration from gpt4all.yaml file
app = App.from_config(yaml_path="gpt4all.yaml")
```
```yaml gpt4all.yaml
llm:
provider: gpt4all
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: gpt4all
config:
model: 'all-MiniLM-L6-v2'
```
</CodeGroup>
## JinaChat
First, set `JINACHAT_API_KEY` in environment variable which you can obtain from [their platform](https://chat.jina.ai/api).
Once you have the key, load the app using the config yaml file:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["JINACHAT_API_KEY"] = "xxx"
# load llm configuration from jina.yaml file
app = App.from_config(yaml_path="jina.yaml")
```
```yaml jina.yaml
llm:
provider: jina
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
</CodeGroup>
## Hugging Face
First, set `HUGGINGFACE_ACCESS_TOKEN` in environment variable which you can obtain from [their platform](https://huggingface.co/settings/tokens).
Once you have the token, load the app using the config yaml file:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
# load llm configuration from huggingface.yaml file
app = App.from_config(yaml_path="huggingface.yaml")
```
```yaml huggingface.yaml
llm:
provider: huggingface
model: 'google/flan-t5-xxl'
config:
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false
```
</CodeGroup>
## Llama2
Llama2 is integrated through [Replicate](https://replicate.com/). Set `REPLICATE_API_TOKEN` in environment variable which you can obtain from [their platform](https://replicate.com/account/api-tokens).
Once you have the token, load the app using the config yaml file:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["REPLICATE_API_TOKEN"] = "xxx"
# load llm configuration from llama2.yaml file
app = App.from_config(yaml_path="llama2.yaml")
```
```yaml llama2.yaml
llm:
provider: llama2
model: 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'
config:
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false
```
</CodeGroup>
## Vertex AI
Setup Google Cloud Platform application credentials by following the instruction on [GCP](https://cloud.google.com/docs/authentication/external/set-up-adc). Once setup is done, use the following code to create an app using VertexAI as provider:
<CodeGroup>
```python main.py
from embedchain import App
# load llm configuration from vertexai.yaml file
app = App.from_config(yaml_path="vertexai.yaml")
```
```yaml vertexai.yaml
llm:
provider: vertexai
model: 'chat-bison'
config:
temperature: 0.5
top_p: 0.5
```
</CodeGroup>
<br/ >
<Snippet file="missing-llm-tip.mdx" />

View File

@@ -0,0 +1,142 @@
---
title: 🗄️ Vector databases
---
## Overview
Utilizing a vector database alongside Embedchain is a seamless process. All you need to do is configure it within the YAML configuration file. We've provided examples for each supported database below:
<CardGroup cols={4}>
<Card title="ChromaDB" href="#chromadb"></Card>
<Card title="Elasticsearch" href="#elasticsearch"></Card>
<Card title="OpenSearch" href="#opensearch"></Card>
<Card title="Zilliz" href="#zilliz"></Card>
<Card title="LanceDB" href="#lancedb"></Card>
<Card title="Pinecone" href="#pinecone"></Card>
<Card title="Qdrant" href="#qdrant"></Card>
<Card title="Weaviate" href="#weaviate"></Card>
</CardGroup>
## ChromaDB
<CodeGroup>
```python main.py
from embedchain import App
# load chroma configuration from yaml file
app = App.from_config(yaml_path="chroma-config-1.yaml")
```
```yaml chroma-config-1.yaml
vectordb:
provider: chroma
config:
collection_name: 'my-collection'
dir: db
allow_reset: true
```
```yaml chroma-config-2.yaml
vectordb:
provider: chroma
config:
collection_name: 'my-collection'
host: localhost
port: 5200
allow_reset: true
```
</CodeGroup>
## Elasticsearch
<CodeGroup>
```python main.py
from embedchain import App
# load elasticsearch configuration from yaml file
app = App.from_config(yaml_path="elasticsearch.yaml")
```
```yaml elasticsearch.yaml
vectordb:
provider: elasticsearch
config:
collection_name: 'es-index'
es_url: http://localhost:9200
allow_reset: true
api_key: xxx
```
</CodeGroup>
## OpenSearch
<CodeGroup>
```python main.py
from embedchain import App
# load opensearch configuration from yaml file
app = App.from_config(yaml_path="opensearch.yaml")
```
```yaml opensearch.yaml
vectordb:
provider: opensearch
config:
opensearch_url: 'https://localhost:9200'
http_auth:
- admin
- admin
vector_dimension: 1536
collection_name: 'my-app'
use_ssl: false
verify_certs: false
```
</CodeGroup>
## Zilliz
<CodeGroup>
```python main.py
from embedchain import App
# load zilliz configuration from yaml file
app = App.from_config(yaml_path="zilliz.yaml")
```
```yaml zilliz.yaml
vectordb:
provider: zilliz
config:
collection_name: 'zilliz-app'
uri: https://xxxx.api.gcp-region.zillizcloud.com
token: xxx
vector_dim: 1536
metric_type: L2
```
</CodeGroup>
## LanceDB
_Coming soon_
## Pinecone
_Coming soon_
## Qdrant
_Coming soon_
## Weaviate
_Coming soon_
<Snippet file="missing-vector-db-tip.mdx" />

View File

@@ -1,14 +1,19 @@
---
title: 'CSV'
title: '📊 CSV'
---
### CSV file
To add any csv file, use the data_type as `csv`. `csv` allows remote urls and conventional file paths. Headers are included for each line, so if you have an `age` column, `18` will be added as `age: 18`. Eg:
```python
app.add('https://example.com/content/sheet.csv', data_type="csv")
app.add('content/sheet.csv', data_type="csv")
from embedchain import App
app = App()
app.add('https://people.sc.fsu.edu/~jburkardt/data/csv/airtravel.csv', data_type="csv")
# Or add using the local file path
# app.add('/path/to/file.csv', data_type="csv")
app.query("Summarize the air travel data")
# Answer: The air travel data shows the number of flights for the months of July in the years 1958, 1959, and 1960. In July 1958, there were 491 flights, in July 1959 there were 548 flights, and in July 1960 there were 622 flights.
```
Note: There is a size limit allowed for csv file beyond which it can throw error. This limit is set by the LLMs. Please consider chunking large csv files into smaller csv files.

View File

@@ -1,18 +1,16 @@
---
title: 'Data Type Handling'
title: 'Data type handling'
---
## Automatic data type detection
The add method automatically tries to detect the data_type, based on your input for the source argument. So `app.add('https://www.youtube.com/watch?v=dQw4w9WgXcQ')` is enough to embed a YouTube video.
This detection is implemented for all formats. It is based on factors such as whether it's a URL, a local file, the source data type, etc.
### Debugging automatic detection
Set `log_level=DEBUG` (in [AppConfig](http://localhost:3000/advanced/query_configuration#appconfig)) and make sure it's working as intended.
Otherwise, you will not know when, for instance, an invalid filepath is interpreted as raw text instead.
Set `log_level: DEBUG` in the config yaml to debug if the data type detection is done right or not. Otherwise, you will not know when, for instance, an invalid filepath is interpreted as raw text instead.
### Forcing a data type
@@ -21,7 +19,7 @@ The examples below show you the keyword to force the respective `data_type`.
Forcing can also be used for edge cases, such as interpreting a sitemap as a web_page, for reading its raw text instead of following links.
## Remote Data Types
## Remote data types
<Tip>
**Use local files in remote data types**
@@ -32,7 +30,7 @@ You can pass local files by formatting the path using the `file:` [URI scheme](h
## Reusing a vector database
Default behavior is to create a persistent vector DB in the directory **./db**. You can split your application into two Python scripts: one to create a local vector DB and the other to reuse this local persistent vector DB. This is useful when you want to index hundreds of documents and separately implement a chat interface.
Default behavior is to create a persistent vector db in the directory **./db**. You can split your application into two Python scripts: one to create a local vector db and the other to reuse this local persistent vector db. This is useful when you want to index hundreds of documents and separately implement a chat interface.
Create a local index:

View File

@@ -1,11 +1,14 @@
---
title: 'Code Documentation'
title: '📚🌐 Code documentation'
---
### Code documentation
To add any code documentation website as a loader, use the data_type as `docs_site`. Eg:
```python
from embedchain import App
app = App()
app.add("https://docs.embedchain.ai/", data_type="docs_site")
app.query("What is Embedchain?")
# Answer: Embedchain is a platform that utilizes various components, including paid/proprietary ones, to provide what is believed to be the best configuration available. It uses LLM (Language Model) providers such as OpenAI, Anthpropic, Vertex_AI, GPT4ALL, Azure_OpenAI, LLAMA2, JINA, and COHERE. Embedchain allows users to import and utilize these LLM providers for their applications.'
```

View File

@@ -1,5 +1,5 @@
---
title: 'Docx File'
title: '📄 Docx file'
---
### Docx file
@@ -7,6 +7,12 @@ title: 'Docx File'
To add any doc/docx file, use the data_type as `docx`. `docx` allows remote urls and conventional file paths. Eg:
```python
from embedchain import App
app = App()
app.add('https://example.com/content/intro.docx', data_type="docx")
app.add('content/intro.docx', data_type="docx")
# Or add file using the local file path on your system
# app.add('content/intro.docx', data_type="docx")
app.query("Summarize the docx data?")
```

View File

@@ -1,24 +0,0 @@
---
title: 'How to add data'
---
## Add Dataset
- This step assumes that you have already created an `App`. We are calling our app instance as `naval_chat_bot` 🤖
- Now use `.add` method to add any dataset.
```python
naval_chat_bot = App()
# Embed Online Resources
naval_chat_bot.add("https://www.youtube.com/watch?v=3qHkcs3kG44")
naval_chat_bot.add("https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf")
naval_chat_bot.add("https://nav.al/feedback")
naval_chat_bot.add("https://nav.al/agi")
# Embed Local Resources
naval_chat_bot.add(("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor."))
```
The possible formats to add data can be found on the [Supported Data Formats](/advanced/data_types) page.

View File

@@ -1,12 +1,14 @@
---
title: 'Mdx'
title: '📝 Mdx file'
---
### Mdx file
To add any mdx file to your app, use the data_type (first argument to `.add()` method) as `mdx`. Note that this supports support mdx file present on machine, so this should be a file path. Eg:
To add any `.mdx` file to your app, use the data_type (first argument to `.add()` method) as `mdx`. Note that this supports support mdx file present on machine, so this should be a file path. Eg:
```python
from embedchain import App
app = App()
app.add('path/to/file.mdx', data_type='mdx')
app.query("What are the docs about?")
```

View File

@@ -1,15 +1,20 @@
---
title: 'Notion'
title: '📓 Notion'
---
### Notion
To use notion you must install the extra dependencies with `pip install --upgrade embedchain[notion]`.
To load a notion page, use the data_type as `notion`. Since it is hard to automatically detect, forcing this is advised.
To load a notion page, use the data_type as `notion`. Since it is hard to automatically detect, it is advised to specify the `data_type` when adding a notion document.
The next argument must **end** with the `notion page id`. The id is a 32-character string. Eg:
```python
app.add("cfbc134ca6464fc980d0391613959196", "notion")
app.add("my-page-cfbc134ca6464fc980d0391613959196", "notion")
app.add("https://www.notion.so/my-page-cfbc134ca6464fc980d0391613959196", "notion")
from embedchain import App
app = App()
app.add("cfbc134ca6464fc980d0391613959196", data_type="notion")
app.add("my-page-cfbc134ca6464fc980d0391613959196", data_type="notion")
app.add("https://www.notion.so/my-page-cfbc134ca6464fc980d0391613959196", data_type="notion")
app.query("Summarize the notion doc")
```

View File

@@ -0,0 +1,24 @@
---
title: Overview
---
Embedchain comes with built-in support for various data sources. We handle the complexity of loading unstructured data from these data sources, allowing you to easily customize your app through a user-friendly interface.
<CardGroup cols={4}>
<Card title="📊 csv" href="/data-sources/csv"></Card>
<Card title="📚🌐 docs site" href="/data-sources/docs-site"></Card>
<Card title="📄 docx" href="/data-sources/docx"></Card>
<Card title="📝 mdx" href="/data-sources/mdx"></Card>
<Card title="📓 notion" href="/data-sources/notion"></Card>
<Card title="📰 pdf" href="/data-sources/pdf-file"></Card>
<Card title="❓💬 q&a pair" href="/data-sources/qna"></Card>
<Card title="🗺️ sitemap" href="/data-sources/sitemap"></Card>
<Card title="📝 text" href="/data-sources/text"></Card>
<Card title="🌐📄 web page" href="/data-sources/web-page"></Card>
<Card title="🧾 xml" href="/data-sources/xml"></Card>
<Card title="🎥📺 youtube video" href="/data-sources/youtube-video"></Card>
</CardGroup>
<br/ >
<Snippet file="missing-data-source-tip.mdx" />

View File

@@ -1,14 +1,17 @@
---
title: 'PDF File'
title: '📰 PDF file'
---
### PDF File
To add any pdf file, use the data_type as `pdf_file`. Eg:
```python
app.add('a_valid_url_where_pdf_file_can_be_accessed', data_type='pdf_file')
from embedchain import App
app = App()
app.add('https://arxiv.org/pdf/1706.03762.pdf', data_type='pdf_file')
app.query("What is the paper 'attention is all you need' about?")
# Answer: The paper "Attention Is All You Need" proposes a new network architecture called the Transformer, which is based solely on attention mechanisms. It suggests moving away from complex recurrent or convolutional neural networks and instead using attention mechanisms to connect the encoder and decoder in sequence transduction models.
```
Note that we do not support password protected pdfs.

View File

@@ -1,11 +1,13 @@
---
title: 'QnA Pair'
title: '❓💬 Queston and answer pair'
---
### QnA pair
QnA pair is a local data type. To supply your own QnA pair, use the data_type as `qna_pair` and enter a tuple. Eg:
```python
from embedchain import App
app = App()
app.add(("Question", "Answer"), data_type="qna_pair")
```

View File

@@ -1,4 +0,0 @@
---
title: 'Request New Format'
url: https://forms.gle/gB5La14tjgy4p94dA
---

View File

@@ -1,11 +1,13 @@
---
title: 'Sitemap'
title: '🗺️ Sitemap'
---
### Sitemap
Add all web pages from an xml-sitemap. Filters non-text files. Use the data_type as `sitemap`. Eg:
```python
from embedchain import App
app = App()
app.add('https://example.com/sitemap.xml', data_type='sitemap')
```

View File

@@ -1,5 +1,5 @@
---
title: 'Text'
title: '📝 Text'
---
### Text
@@ -7,6 +7,10 @@ title: 'Text'
Text is a local data type. To supply your own text, use the data_type as `text` and enter a string. The text is not processed, this can be very versatile. Eg:
```python
from embedchain import App
app = App()
app.add('Seek wealth, not money or status. Wealth is having assets that earn while you sleep. Money is how we transfer time and wealth. Status is your place in the social hierarchy.', data_type='text')
```

View File

@@ -1,11 +1,13 @@
---
title: 'Web page'
title: '🌐📄 Web page'
---
### Web page
To add any web page, use the data_type as `web_page`. Eg:
```python
from embedchain import App
app = App()
app.add('a_valid_web_page_url', data_type='web_page')
```

View File

@@ -1,5 +1,5 @@
---
title: 'XML File'
title: '🧾 XML file'
---
### XML file
@@ -7,6 +7,10 @@ title: 'XML File'
To add any xml file, use the data_type as `xml`. Eg:
```python
from embedchain import App
app = App()
app.add('content/data.xml')
```

View File

@@ -1,12 +1,13 @@
---
title: 'Youtube Video'
title: '🎥📺 Youtube video'
---
### Youtube video
To add any youtube video to your app, use the data_type (first argument to `.add()` method) as `youtube_video`. Eg:
```python
from embedchain import App
app = App()
app.add('a_valid_youtube_url_here', data_type='youtube_video')
```

View File

@@ -1,16 +0,0 @@
---
title: ❓ Frequently Asked Questions
description: 'Collections of all the frequently asked questions about Embedchain'
---
## How to use GPT-4 as the LLM model
```python
from embedchain import App
from embedchain.config import LlmConfig
app = App()
app.add("https://en.wikipedia.org/wiki/Elon_Musk")
app.query("How many companies does Elon Musk run and name those?", config=LlmConfig(model="gpt-4"))
```

View File

@@ -1,60 +0,0 @@
---
title: 📚 Introduction
description: '📝 Embedchain is a framework to easily create LLM powered bots over any dataset.'
---
## 🤔 What is Embedchain?
Embedchain abstracts the entire process of loading a dataset, chunking it, creating embeddings, and storing it in a vector database.
You can add a single or multiple datasets using the `.add` method. Then, simply use the `.query` method to find answers from the added datasets.
If you want to create a Naval Ravikant bot with a YouTube video, a book in PDF format, two blog posts, and a question and answer pair, all you need to do is add the respective links. Embedchain will take care of the rest, creating a bot for you.
```python
from embedchain import App
naval_chat_bot = App()
# Embed Online Resources
naval_chat_bot.add("https://www.youtube.com/watch?v=3qHkcs3kG44")
naval_chat_bot.add("https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf")
naval_chat_bot.add("https://nav.al/feedback")
naval_chat_bot.add("https://nav.al/agi")
naval_chat_bot.add("The Meanings of Life", 'text', metadata={'chapter': 'philosphy'})
# Embed Local Resources
naval_chat_bot.add(("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor."))
naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?")
# Answer: Naval argues that humans possess the unique capacity to understand explanations or concepts to the maximum extent possible in this physical reality.
# with where context filter
naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?", where={'chapter': 'philosophy'})
```
## 🚀 How it works?
Creating a chat bot over any dataset involves the following steps:
1. Detect the data type and load the data
2. Create meaningful chunks
3. Create embeddings for each chunk
4. Store the chunks in a vector database
When a user asks a query, the following process happens to find the answer:
1. Create an embedding for the query
2. Find similar documents for the query from the vector database
3. Pass the similar documents as context to LLM to get the final answer.
The process of loading the dataset and querying involves multiple steps, each with its own nuances:
- How should I chunk the data? What is a meaningful chunk size?
- How should I create embeddings for each chunk? Which embedding model should I use?
- How should I store the chunks in a vector database? Which vector database should I use?
- Should I store metadata along with the embeddings?
- How should I find similar documents for a query? Which ranking model should I use?
Embedchain takes care of all these nuances and provides a simple interface to create bots over any dataset.
In the first release, we make it easier for anyone to get a chatbot over any dataset up and running in less than a minute. Just create an app instance, add the datasets using the `.add` method, and use the `.query` method to get the relevant answers.

View File

@@ -1,35 +0,0 @@
---
title: '🚀 Quickstart'
description: '💡 Start building LLM powered bots under 30 seconds'
---
Install embedchain python package:
```bash
pip install --upgrade embedchain
```
Creating a chatbot involves 3 steps:
- ⚙️ Import the App instance
- 🗃️ Add Dataset
- 💬 Query or Chat on the dataset and get answers (Interface Types)
Run your first bot in python using the following code. Make sure to set the `OPENAI_API_KEY` 🔑 environment variable in the code.
```python
import os
from embedchain import App
os.environ["OPENAI_API_KEY"] = "xxx"
elon_musk_bot = App()
# Embed Online Resources
elon_musk_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
elon_musk_bot.add("https://www.forbes.com/profile/elon-musk")
response = elon_musk_bot.query("How many companies does Elon Musk run and name those?")
print(response)
# Answer: 'Elon Musk currently runs several companies. As of my knowledge, he is the CEO and lead designer of SpaceX, the CEO and product architect of Tesla, Inc., the CEO and founder of Neuralink, and the CEO and founder of The Boring Company. However, please note that this information may change over time, so it's always good to verify the latest updates.'
```

68
docs/get-started/faq.mdx Normal file
View File

@@ -0,0 +1,68 @@
---
title: ❓ FAQs
description: 'Collections of all the frequently asked questions'
---
#### How to use GPT-4 as the LLM model?
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ['OPENAI_API_KEY'] = 'xxx'
# load llm configuration from gpt4.yaml file
app = App.from_config(yaml_path="gpt4.yaml")
```
```yaml gpt4.yaml
llm:
provider: openai
model: 'gpt-4'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
</CodeGroup>
#### I don't have OpenAI credits. How can I use some open source model?
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ['OPENAI_API_KEY'] = 'xxx'
# load llm configuration from opensource.yaml file
app = App.from_config(yaml_path="opensource.yaml")
```
```yaml opensource.yaml
llm:
provider: gpt4all
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: gpt4all
config:
model: 'all-MiniLM-L6-v2'
```
</CodeGroup>
#### How to contact support?
If docs aren't sufficient, please feel free to reach out to us using one of the following methods:
<Snippet file="get-help.mdx" />

View File

@@ -0,0 +1,58 @@
---
title: 📚 Introduction
description: '📝 Embedchain is a framework to easily create LLM powered apps on your data.'
---
## 🤔 What is Embedchain?
Embedchain abstracts the entire process of loading data, chunking it, creating embeddings, and storing it in a vector database.
You can add data from different data sources using the `.add()` method. Then, simply use the `.query()` method to find answers from the added datasets.
If you want to create a Naval Ravikant bot with a YouTube video, a book in PDF format, two blog posts, and a question and answer pair, all you need to do is add the respective links. Embedchain will take care of the rest, creating a bot for you.
```python
from embedchain import App
naval_bot = App()
# Add online data
naval_bot.add("https://www.youtube.com/watch?v=3qHkcs3kG44")
naval_bot.add("https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf")
naval_bot.add("https://nav.al/feedback")
naval_bot.add("https://nav.al/agi")
naval_bot.add("The Meanings of Life", 'text', metadata={'chapter': 'philosphy'})
# Add local resources
naval_bot.add(("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor."))
naval_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?")
# Answer: Naval argues that humans possess the unique capacity to understand explanations or concepts to the maximum extent possible in this physical reality.
# Ask questions with specific context
naval_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?", where={'chapter': 'philosophy'})
```
## 🚀 How it works?
Embedchain abstracts out the following steps from you to easily create LLM powered apps:
1. Detect the data type and load data
2. Create meaningful chunks
3. Create embeddings for each chunk
4. Store chunks in a vector database
When a user asks a query, the following process happens to find the answer:
1. Create an embedding for the query
2. Find similar documents for the query from the vector database
3. Pass the similar documents as context to LLM to get the final answer
The process of loading the dataset and querying involves multiple steps, each with its own nuances:
- How should I chunk the data? What is a meaningful chunk size?
- How should I create embeddings for each chunk? Which embedding model should I use?
- How should I store the chunks in a vector database? Which vector database should I use?
- Should I store metadata along with the embeddings?
- How should I find similar documents for a query? Which ranking model should I use?
Embedchain takes care of all these nuances and provides a simple interface to create apps on any data.

View File

@@ -0,0 +1,52 @@
---
title: '🚀 Quickstart'
description: '💡 Start building LLM powered apps under 30 seconds'
---
Install embedchain python package:
```bash
pip install embedchain
```
Creating an app involves 3 steps:
<Steps>
<Step title="⚙️ Import app instance">
```python
from embedchain import App
app = App()
```
</Step>
<Step title="🗃️ Add data sources">
```python
# Embed online resources
elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("https://www.forbes.com/profile/elon-musk")
```
</Step>
<Step title="💬 Query or chat on your data and get answers">
```python
elon_bot.query("What is the net worth of Elon Musk today?")
# Answer: The net worth of Elon Musk today is $258.7 billion.
```
</Step>
</Steps>
Putting it together, you can run your first app using the following code. Make sure to set the `OPENAI_API_KEY` 🔑 environment variable in the code.
```python
import os
from embedchain import App
os.environ["OPENAI_API_KEY"] = "xxx"
elon_bot = App()
# Embed online resources
elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("https://www.forbes.com/profile/elon-musk")
response = elon_bot.query("What is the net worth of Elon Musk today?")
print(response)
# Answer: The net worth of Elon Musk today is $258.7 billion.
```

View File

@@ -16,13 +16,13 @@
"name": "Twitter",
"url": "https://twitter.com/embedchain"
},
{
"name": "Discord",
"url": "https://discord.gg/6PzXDgEjG5"
},
{
"name":"Slack",
"url":"https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw"
},
{
"name": "Discord",
"url": "https://discord.gg/6PzXDgEjG5"
}
],
"topbarCtaButton": {
@@ -32,20 +32,18 @@
"navigation": [
{
"group": "Get started",
"pages": ["get-start/quickstart", "get-start/introduction", "get-start/faq"]
},
{
"group": "Advanced",
"pages": ["advanced/app_types", "advanced/interface_types", "advanced/query_configuration", "advanced/configuration", "advanced/testing", "advanced/vector_database"]
"pages": ["get-started/quickstart", "get-started/introduction", "get-started/faq"]
},
{
"group": "Data Sources",
"group": "Components",
"pages": ["components/llms", "components/embedding-models", "components/vector-databases"]
},
{
"group": "Data sources",
"pages": [
"data-sources/how-to-add-data",
"data-sources/data-type-handling",
"data-sources/overview",
{
"group": "Supported Data Sources",
"group": "Supported data sources",
"pages": [
"data-sources/csv",
"data-sources/docs-site",
@@ -60,9 +58,13 @@
"data-sources/youtube-video"
]
},
"data-sources/request-new-format"
"data-sources/data-type-handling"
]
},
{
"group": "Advanced",
"pages": ["advanced/configuration"]
},
{
"group": "Examples",
"pages": ["examples/full_stack", "examples/api_server", "examples/discord_bot", "examples/slack_bot", "examples/telegram_bot", "examples/whatsapp_bot", "examples/poe_bot"]
@@ -75,7 +77,7 @@
]
},
{
"group": "Integration",
"group": "Integrations",
"pages": ["integration/langsmith"]
},
{
@@ -98,12 +100,14 @@
],
"footerSocials": {
"twitter": "https://twitter.com/embedchain",
"github": "https://github.com/embedchain/embedchain",
"linkedin": "https://www.linkedin.com/company/embedchain",
"website": "https://embedchain.ai",
"slack":"https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw"
"github": "https://github.com/embedchain/embedchain",
"slack":"https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw",
"discord": "https://discord.gg/6PzXDgEjG5",
"twitter": "https://twitter.com/embedchain",
"linkedin": "https://www.linkedin.com/company/embedchain"
},
"backgroundImage": "/background.png",
"isWhiteLabeled": true
"isWhiteLabeled": true,
"feedback.thumbsRating": true
}

View File

@@ -46,7 +46,7 @@ class App(EmbedChain):
:param llm: LLM Class instance. example: `from embedchain.llm.openai import OpenAILlm`, defaults to OpenAiLlm
:type llm: BaseLlm, optional
:param llm_config: Allows you to configure the LLM, e.g. how many documents to return,
example: `from embedchain.config import LlmConfig`, defaults to None
example: `from embedchain.config import BaseLlmConfig`, defaults to None
:type llm_config: Optional[BaseLlmConfig], optional
:param db: The database to use for storing and retrieving embeddings,
example: `from embedchain.vectordb.chroma_db import ChromaDb`, defaults to ChromaDb

View File

@@ -46,7 +46,7 @@ class OpenSourceApp(App):
that does not fall into the LLM, database or embedder category, defaults to None
:type config: OpenSourceAppConfig, optional
:param llm_config: Allows you to configure the LLM, e.g. how many documents to return.
example: `from embedchain.config import LlmConfig`, defaults to None
example: `from embedchain.config import BaseLlmConfig`, defaults to None
:type llm_config: BaseLlmConfig, optional
:param chromadb_config: Allows you to configure the open source database,
example: `from embedchain.config import ChromaDbConfig`, defaults to None
@@ -54,7 +54,7 @@ class OpenSourceApp(App):
:param system_prompt: System prompt that will be provided to the LLM as such.
Please don't use for the time being, as it's not supported., defaults to None
:type system_prompt: Optional[str], optional
:raises TypeError: `OpenSourceAppConfig` or `LlmConfig` invalid.
:raises TypeError: `OpenSourceAppConfig` or `BaseLlmConfig` invalid.
"""
logging.warning(
"DEPRECATION WARNING: Please use `App` instead of `OpenSourceApp`."

View File

@@ -4,7 +4,7 @@ from embedchain.apps.app import App
from embedchain.apps.open_source_app import OpenSourceApp
from embedchain.config import BaseLlmConfig
from embedchain.config.apps.base_app_config import BaseAppConfig
from embedchain.config.llm.base_llm_config import (DEFAULT_PROMPT,
from embedchain.config.llm.base import (DEFAULT_PROMPT,
DEFAULT_PROMPT_WITH_HISTORY)
from embedchain.helper.json_serializable import register_deserializable

View File

@@ -1,7 +1,7 @@
from typing import Any
from embedchain import App
from embedchain.config import AddConfig, AppConfig, LlmConfig
from embedchain.config import AddConfig, AppConfig, BaseLlmConfig
from embedchain.embedder.openai import OpenAIEmbedder
from embedchain.helper.json_serializable import (JSONSerializable,
register_deserializable)
@@ -27,14 +27,14 @@ class BaseBot(JSONSerializable):
config = config if config else AddConfig()
self.app.add(data, config=config)
def query(self, query: str, config: LlmConfig = None) -> str:
def query(self, query: str, config: BaseLlmConfig = None) -> str:
"""
Query the bot
:param query: the user query
:type query: str
:param config: configuration class instance, defaults to None
:type config: LlmConfig, optional
:type config: BaseLlmConfig, optional
:return: Answer
:rtype: str
"""

View File

@@ -7,8 +7,7 @@ from .apps.open_source_app_config import OpenSourceAppConfig
from .base_config import BaseConfig
from .embedder.base import BaseEmbedderConfig
from .embedder.base import BaseEmbedderConfig as EmbedderConfig
from .llm.base_llm_config import BaseLlmConfig
from .llm.base_llm_config import BaseLlmConfig as LlmConfig
from .llm.base import BaseLlmConfig
from .vectordb.chroma import ChromaDbConfig
from .vectordb.elasticsearch import ElasticsearchDBConfig
from .vectordb.opensearch import OpenSearchDBConfig

View File

@@ -73,7 +73,6 @@ class BaseLlmConfig(BaseConfig):
Initializes a configuration class instance for the LLM.
Takes the place of the former `QueryConfig` or `ChatConfig`.
Use `LlmConfig` as an alias to `BaseLlmConfig`.
:param number_documents: Number of documents to pull from the database as
context, defaults to 1
@@ -115,6 +114,9 @@ class BaseLlmConfig(BaseConfig):
self.system_prompt = system_prompt
self.query_type = query_type
if type(template) is str:
template = Template(template)
if self.validate_template(template):
self.template = template
else:

View File

@@ -470,7 +470,7 @@ class EmbedChain(JSONSerializable):
:param input_query: The query to use.
:type input_query: str
:param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
:param config: The `BaseLlmConfig` instance to use as configuration options. This is used for one method call.
To persistently use a config, declare it during app init., defaults to None
:type config: Optional[BaseLlmConfig], optional
:param dry_run: A dry run does everything except send the resulting prompt to
@@ -506,7 +506,7 @@ class EmbedChain(JSONSerializable):
:param input_query: The query to use.
:type input_query: str
:param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
:param config: The `BaseLlmConfig` instance to use as configuration options. This is used for one method call.
To persistently use a config, declare it during app init., defaults to None
:type config: Optional[BaseLlmConfig], optional
:param dry_run: A dry run does everything except send the resulting prompt to

View File

@@ -7,7 +7,7 @@ from embedchain.embedder.base import BaseEmbedder
from embedchain.models import VectorDimensions
class VertexAiEmbedder(BaseEmbedder):
class VertexAIEmbedder(BaseEmbedder):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config=config)

View File

@@ -13,16 +13,16 @@ class LlmFactory:
"azure_openai": "embedchain.llm.azure_openai.AzureOpenAILlm",
"cohere": "embedchain.llm.cohere.CohereLlm",
"gpt4all": "embedchain.llm.gpt4all.GPT4ALLLlm",
"hugging_face_llm": "embedchain.llm.hugging_face_llm.HuggingFaceLlm",
"huggingface": "embedchain.llm.huggingface.HuggingFaceLlm",
"jina": "embedchain.llm.jina.JinaLlm",
"llama2": "embedchain.llm.llama2.Llama2Llm",
"openai": "embedchain.llm.openai.OpenAILlm",
"vertexai": "embedchain.llm.vertex_ai.VertexAILlm",
}
provider_to_config_class = {
"embedchain": "embedchain.config.llm.base_llm_config.BaseLlmConfig",
"openai": "embedchain.config.llm.base_llm_config.BaseLlmConfig",
"anthropic": "embedchain.config.llm.base_llm_config.BaseLlmConfig",
"embedchain": "embedchain.config.llm.base.BaseLlmConfig",
"openai": "embedchain.config.llm.base.BaseLlmConfig",
"anthropic": "embedchain.config.llm.base.BaseLlmConfig",
}
@classmethod
@@ -43,7 +43,7 @@ class EmbedderFactory:
provider_to_class = {
"gpt4all": "embedchain.embedder.gpt4all.GPT4AllEmbedder",
"huggingface": "embedchain.embedder.huggingface.HuggingFaceEmbedder",
"vertexai": "embedchain.embedder.vertexai.VertexAiEmbedder",
"vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
"openai": "embedchain.embedder.openai.OpenAIEmbedder",
}
provider_to_config_class = {

View File

@@ -5,8 +5,8 @@ from langchain.memory import ConversationBufferMemory
from langchain.schema import BaseMessage
from embedchain.config import BaseLlmConfig
from embedchain.config.llm.base_llm_config import (
DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE,
from embedchain.config.llm.base import (DEFAULT_PROMPT,
DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE,
DOCS_SITE_PROMPT_TEMPLATE)
from embedchain.helper.json_serializable import JSONSerializable
@@ -174,7 +174,7 @@ class BaseLlm(JSONSerializable):
:type input_query: str
:param contexts: Embeddings retrieved from the database to be used as context.
:type contexts: List[str]
:param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
:param config: The `BaseLlmConfig` instance to use as configuration options. This is used for one method call.
To persistently use a config, declare it during app init., defaults to None
:type config: Optional[BaseLlmConfig], optional
:param dry_run: A dry run does everything except send the resulting prompt to
@@ -230,7 +230,7 @@ class BaseLlm(JSONSerializable):
:type input_query: str
:param contexts: Embeddings retrieved from the database to be used as context.
:type contexts: List[str]
:param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
:param config: The `BaseLlmConfig` instance to use as configuration options. This is used for one method call.
To persistently use a config, declare it during app init., defaults to None
:type config: Optional[BaseLlmConfig], optional
:param dry_run: A dry run does everything except send the resulting prompt to

View File

@@ -30,11 +30,11 @@ class GPT4ALLLlm(BaseLlm):
def _get_answer(self, prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
if config.model and config.model != self.config.model:
raise RuntimeError(
"OpenSourceApp does not support switching models at runtime. Please create a new app instance."
"GPT4ALLLlm does not support switching models at runtime. Please create a new app instance."
)
if config.system_prompt:
raise ValueError("OpenSourceApp does not support `system_prompt`")
raise ValueError("GPT4ALLLlm does not support `system_prompt`")
response = self.instance.generate(
prompt=prompt,

View File

@@ -10,10 +10,10 @@ from embedchain.llm.base import BaseLlm
@register_deserializable
class HuggingFaceHubLlm(BaseLlm):
class HuggingFaceLlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
if "HUGGINGFACEHUB_ACCESS_TOKEN" not in os.environ:
raise ValueError("Please set the HUGGINGFACEHUB_ACCESS_TOKEN environment variable.")
if "HUGGINGFACE_ACCESS_TOKEN" not in os.environ:
raise ValueError("Please set the HUGGINGFACE_ACCESS_TOKEN environment variable.")
try:
importlib.import_module("huggingface_hub")
@@ -27,8 +27,8 @@ class HuggingFaceHubLlm(BaseLlm):
def get_llm_model_answer(self, prompt):
if self.config.system_prompt:
raise ValueError("HuggingFaceHubLlm does not support `system_prompt`")
return HuggingFaceHubLlm._get_answer(prompt=prompt, config=self.config)
raise ValueError("HuggingFaceLlm does not support `system_prompt`")
return HuggingFaceLlm._get_answer(prompt=prompt, config=self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
@@ -43,7 +43,7 @@ class HuggingFaceHubLlm(BaseLlm):
raise ValueError("`top_p` must be > 0.0 and < 1.0")
llm = HuggingFaceHub(
huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_ACCESS_TOKEN"],
huggingfacehub_api_token=os.environ["HUGGINGFACE_ACCESS_TOKEN"],
repo_id=config.model or "google/flan-t5-xxl",
model_kwargs=model_kwargs,
)

View File

@@ -7,12 +7,12 @@ from embedchain.llm.base import BaseLlm
@register_deserializable
class VertexAiLlm(BaseLlm):
class VertexAILlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config=config)
def get_llm_model_answer(self, prompt):
return VertexAiLlm._get_answer(prompt=prompt, config=self.config)
return VertexAILlm._get_answer(prompt=prompt, config=self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:

View File

@@ -1,10 +1,15 @@
[tool.poetry]
name = "embedchain"
version = "0.0.69"
description = "embedchain is a framework to easily create LLM powered bots over any dataset"
authors = ["Taranjeet Singh"]
version = "0.0.70"
description = "Embedchain is a framework to easily create LLM powered apps over any dataset"
authors = ["Taranjeet Singh, Deshraj Yadav"]
license = "Apache License"
readme = "README.md"
exclude = [
"db",
"configs",
"notebooks"
]
[build-system]
requires = ["setuptools", "wheel"]
@@ -36,7 +41,7 @@ exclude = [
"build",
"dist",
"node_modules",
"venv",
"venv"
]
line-length = 120
dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"

View File

@@ -111,7 +111,7 @@ class TestAppFromConfig:
return yaml.safe_load(file)
def test_from_chroma_config(self):
yaml_path = "embedchain/yaml/chroma.yaml"
yaml_path = "configs/chroma.yaml"
config_data = self.load_config_data(yaml_path)
app = App.from_config(yaml_path)
@@ -144,7 +144,7 @@ class TestAppFromConfig:
assert app.embedder.config.deployment_name == embedder_config["deployment_name"]
def test_from_opensource_config(self):
yaml_path = "embedchain/yaml/opensource.yaml"
yaml_path = "configs/opensource.yaml"
config_data = self.load_config_data(yaml_path)
app = App.from_config(yaml_path)

View File

@@ -85,11 +85,11 @@ class TestApp(unittest.TestCase):
a where filter and 'get_llm_model_answer' returns an expected answer string.
The 'chat' method is expected to call 'retrieve_from_database' with the where filter specified
in the LlmConfig and 'get_llm_model_answer' methods appropriately and return the right answer.
in the BaseLlmConfig and 'get_llm_model_answer' methods appropriately and return the right answer.
Key assumptions tested:
- 'retrieve_from_database' method is called exactly once with arguments: "Test query" and an instance of
LLmConfig.
BaseLlmConfig.
- 'get_llm_model_answer' is called exactly once. The specific arguments are not checked in this test.
- 'chat' method returns the value it received from 'get_llm_model_answer'.

View File

@@ -12,7 +12,7 @@ class TestGeneratePrompt(unittest.TestCase):
def test_generate_prompt_with_template(self):
"""
Tests that the generate_prompt method correctly formats the prompt using
a custom template provided in the LlmConfig instance.
a custom template provided in the BaseLlmConfig instance.
This test sets up a scenario with an input query and a list of contexts,
and a custom template, and then calls generate_prompt. It checks that the
@@ -58,7 +58,7 @@ class TestGeneratePrompt(unittest.TestCase):
def test_generate_prompt_with_history(self):
"""
Test the 'generate_prompt' method with LlmConfig containing a history attribute.
Test the 'generate_prompt' method with BaseLlmConfig containing a history attribute.
"""
config = BaseLlmConfig()
config.template = Template("Context: $context | Query: $query | History: $history")

View File

@@ -4,21 +4,21 @@ import unittest
from unittest.mock import MagicMock, patch
from embedchain.config import BaseLlmConfig
from embedchain.llm.hugging_face_hub import HuggingFaceHubLlm
from embedchain.llm.huggingface import HuggingFaceLlm
class TestHuggingFaceHubLlm(unittest.TestCase):
class TestHuggingFaceLlm(unittest.TestCase):
def setUp(self):
os.environ["HUGGINGFACEHUB_ACCESS_TOKEN"] = "test_access_token"
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "test_access_token"
self.config = BaseLlmConfig(model="google/flan-t5-xxl", max_tokens=50, temperature=0.7, top_p=0.8)
def test_init_raises_value_error_without_api_key(self):
os.environ.pop("HUGGINGFACEHUB_ACCESS_TOKEN")
os.environ.pop("HUGGINGFACE_ACCESS_TOKEN")
with self.assertRaises(ValueError):
HuggingFaceHubLlm()
HuggingFaceLlm()
def test_get_llm_model_answer_raises_value_error_for_system_prompt(self):
llm = HuggingFaceHubLlm(self.config)
llm = HuggingFaceLlm(self.config)
llm.config.system_prompt = "system_prompt"
with self.assertRaises(ValueError):
llm.get_llm_model_answer("prompt")
@@ -26,7 +26,7 @@ class TestHuggingFaceHubLlm(unittest.TestCase):
def test_top_p_value_within_range(self):
config = BaseLlmConfig(top_p=1.0)
with self.assertRaises(ValueError):
HuggingFaceHubLlm._get_answer("test_prompt", config)
HuggingFaceLlm._get_answer("test_prompt", config)
def test_dependency_is_imported(self):
importlib_installed = True
@@ -36,27 +36,27 @@ class TestHuggingFaceHubLlm(unittest.TestCase):
importlib_installed = False
self.assertTrue(importlib_installed)
@patch("embedchain.llm.hugging_face_hub.HuggingFaceHubLlm._get_answer")
@patch("embedchain.llm.huggingface.HuggingFaceLlm._get_answer")
def test_get_llm_model_answer(self, mock_get_answer):
mock_get_answer.return_value = "Test answer"
llm = HuggingFaceHubLlm(self.config)
llm = HuggingFaceLlm(self.config)
answer = llm.get_llm_model_answer("Test query")
self.assertEqual(answer, "Test answer")
mock_get_answer.assert_called_once()
@patch("embedchain.llm.hugging_face_hub.HuggingFaceHub")
def test_hugging_face_mock(self, mock_hugging_face_hub):
@patch("embedchain.llm.huggingface.HuggingFaceHub")
def test_hugging_face_mock(self, mock_huggingface):
mock_llm_instance = MagicMock()
mock_llm_instance.return_value = "Test answer"
mock_hugging_face_hub.return_value = mock_llm_instance
mock_huggingface.return_value = mock_llm_instance
llm = HuggingFaceHubLlm(self.config)
llm = HuggingFaceLlm(self.config)
answer = llm.get_llm_model_answer("Test query")
self.assertEqual(answer, "Test answer")
mock_hugging_face_hub.assert_called_once_with(
mock_huggingface.assert_called_once_with(
huggingfacehub_api_token="test_access_token",
repo_id="google/flan-t5-xxl",
model_kwargs={"temperature": 0.7, "max_new_tokens": 50, "top_p": 0.8},

View File

@@ -24,7 +24,7 @@ class TestApp(unittest.TestCase):
Key assumptions tested:
- 'retrieve_from_database' method is called exactly once with arguments: "Test query" and an instance of
LlmConfig.
BaseLlmConfig.
- 'get_llm_model_answer' is called exactly once. The specific arguments are not checked in this test.
- 'query' method returns the value it received from 'get_llm_model_answer'.
@@ -82,7 +82,7 @@ class TestApp(unittest.TestCase):
Key assumptions tested:
- 'retrieve_from_database' method is called exactly once with arguments: "Test query" and an instance of
LlmConfig.
BaseLlmConfig.
- 'get_llm_model_answer' is called exactly once. The specific arguments are not checked in this test.
- 'query' method returns the value it received from 'get_llm_model_answer'.
@@ -113,7 +113,7 @@ class TestApp(unittest.TestCase):
Key assumptions tested:
- 'retrieve_from_database' method is called exactly once with arguments: "Test query" and an instance of
LlmConfig.
BaseLlmConfig.
- 'get_llm_model_answer' is called exactly once. The specific arguments are not checked in this test.
- 'query' method returns the value it received from 'get_llm_model_answer'.

View File

@@ -4,17 +4,17 @@ import pytest
from langchain.schema import HumanMessage, SystemMessage
from embedchain.config import BaseLlmConfig
from embedchain.llm.vertex_ai import VertexAiLlm
from embedchain.llm.vertex_ai import VertexAILlm
@pytest.fixture
def vertexai_llm():
config = BaseLlmConfig(temperature=0.6, model="vertexai_model", system_prompt="System Prompt")
return VertexAiLlm(config)
return VertexAILlm(config)
def test_get_llm_model_answer(vertexai_llm):
with patch.object(VertexAiLlm, "_get_answer", return_value="Test Response") as mock_method:
with patch.object(VertexAILlm, "_get_answer", return_value="Test Response") as mock_method:
prompt = "Test Prompt"
response = vertexai_llm.get_llm_model_answer(prompt)
assert response == "Test Response"

View File

@@ -34,12 +34,12 @@ class TestFactories:
{"model": "sentence-transformers/all-mpnet-base-v2"},
embedchain.embedder.huggingface.HuggingFaceEmbedder,
),
("vertexai", {"model": "textembedding-gecko"}, embedchain.embedder.vertexai.VertexAiEmbedder),
("vertexai", {"model": "textembedding-gecko"}, embedchain.embedder.vertexai.VertexAIEmbedder),
("openai", {}, embedchain.embedder.openai.OpenAIEmbedder),
],
)
def test_embedder_factory_create(self, mocker, provider_name, config_data, expected_class):
mocker.patch("embedchain.embedder.vertexai.VertexAiEmbedder", autospec=True)
mocker.patch("embedchain.embedder.vertexai.VertexAIEmbedder", autospec=True)
embedder_instance = EmbedderFactory.create(provider_name, config_data)
assert isinstance(embedder_instance, expected_class)