[docs]: Revamp embedchain docs (#799)
This commit is contained in:
68
docs/get-started/faq.mdx
Normal file
68
docs/get-started/faq.mdx
Normal file
@@ -0,0 +1,68 @@
|
||||
---
|
||||
title: ❓ FAQs
|
||||
description: 'Collections of all the frequently asked questions'
|
||||
---
|
||||
|
||||
#### How to use GPT-4 as the LLM model?
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
# load llm configuration from gpt4.yaml file
|
||||
app = App.from_config(yaml_path="gpt4.yaml")
|
||||
```
|
||||
|
||||
```yaml gpt4.yaml
|
||||
llm:
|
||||
provider: openai
|
||||
model: 'gpt-4'
|
||||
config:
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
#### I don't have OpenAI credits. How can I use some open source model?
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ['OPENAI_API_KEY'] = 'xxx'
|
||||
|
||||
# load llm configuration from opensource.yaml file
|
||||
app = App.from_config(yaml_path="opensource.yaml")
|
||||
```
|
||||
|
||||
```yaml opensource.yaml
|
||||
llm:
|
||||
provider: gpt4all
|
||||
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
|
||||
config:
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
stream: false
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'all-MiniLM-L6-v2'
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
#### How to contact support?
|
||||
|
||||
If docs aren't sufficient, please feel free to reach out to us using one of the following methods:
|
||||
|
||||
<Snippet file="get-help.mdx" />
|
||||
58
docs/get-started/introduction.mdx
Normal file
58
docs/get-started/introduction.mdx
Normal file
@@ -0,0 +1,58 @@
|
||||
---
|
||||
title: 📚 Introduction
|
||||
description: '📝 Embedchain is a framework to easily create LLM powered apps on your data.'
|
||||
---
|
||||
|
||||
## 🤔 What is Embedchain?
|
||||
|
||||
Embedchain abstracts the entire process of loading data, chunking it, creating embeddings, and storing it in a vector database.
|
||||
|
||||
You can add data from different data sources using the `.add()` method. Then, simply use the `.query()` method to find answers from the added datasets.
|
||||
|
||||
If you want to create a Naval Ravikant bot with a YouTube video, a book in PDF format, two blog posts, and a question and answer pair, all you need to do is add the respective links. Embedchain will take care of the rest, creating a bot for you.
|
||||
|
||||
```python
|
||||
from embedchain import App
|
||||
|
||||
naval_bot = App()
|
||||
# Add online data
|
||||
naval_bot.add("https://www.youtube.com/watch?v=3qHkcs3kG44")
|
||||
naval_bot.add("https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf")
|
||||
naval_bot.add("https://nav.al/feedback")
|
||||
naval_bot.add("https://nav.al/agi")
|
||||
naval_bot.add("The Meanings of Life", 'text', metadata={'chapter': 'philosphy'})
|
||||
|
||||
# Add local resources
|
||||
naval_bot.add(("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor."))
|
||||
|
||||
naval_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?")
|
||||
# Answer: Naval argues that humans possess the unique capacity to understand explanations or concepts to the maximum extent possible in this physical reality.
|
||||
|
||||
# Ask questions with specific context
|
||||
naval_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?", where={'chapter': 'philosophy'})
|
||||
```
|
||||
|
||||
## 🚀 How it works?
|
||||
|
||||
Embedchain abstracts out the following steps from you to easily create LLM powered apps:
|
||||
|
||||
1. Detect the data type and load data
|
||||
2. Create meaningful chunks
|
||||
3. Create embeddings for each chunk
|
||||
4. Store chunks in a vector database
|
||||
|
||||
When a user asks a query, the following process happens to find the answer:
|
||||
|
||||
1. Create an embedding for the query
|
||||
2. Find similar documents for the query from the vector database
|
||||
3. Pass the similar documents as context to LLM to get the final answer
|
||||
|
||||
The process of loading the dataset and querying involves multiple steps, each with its own nuances:
|
||||
|
||||
- How should I chunk the data? What is a meaningful chunk size?
|
||||
- How should I create embeddings for each chunk? Which embedding model should I use?
|
||||
- How should I store the chunks in a vector database? Which vector database should I use?
|
||||
- Should I store metadata along with the embeddings?
|
||||
- How should I find similar documents for a query? Which ranking model should I use?
|
||||
|
||||
Embedchain takes care of all these nuances and provides a simple interface to create apps on any data.
|
||||
52
docs/get-started/quickstart.mdx
Normal file
52
docs/get-started/quickstart.mdx
Normal file
@@ -0,0 +1,52 @@
|
||||
---
|
||||
title: '🚀 Quickstart'
|
||||
description: '💡 Start building LLM powered apps under 30 seconds'
|
||||
---
|
||||
|
||||
Install embedchain python package:
|
||||
|
||||
```bash
|
||||
pip install embedchain
|
||||
```
|
||||
|
||||
Creating an app involves 3 steps:
|
||||
|
||||
<Steps>
|
||||
<Step title="⚙️ Import app instance">
|
||||
```python
|
||||
from embedchain import App
|
||||
app = App()
|
||||
```
|
||||
</Step>
|
||||
<Step title="🗃️ Add data sources">
|
||||
```python
|
||||
# Embed online resources
|
||||
elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
elon_bot.add("https://www.forbes.com/profile/elon-musk")
|
||||
```
|
||||
</Step>
|
||||
<Step title="💬 Query or chat on your data and get answers">
|
||||
```python
|
||||
elon_bot.query("What is the net worth of Elon Musk today?")
|
||||
# Answer: The net worth of Elon Musk today is $258.7 billion.
|
||||
```
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
Putting it together, you can run your first app using the following code. Make sure to set the `OPENAI_API_KEY` 🔑 environment variable in the code.
|
||||
|
||||
```python
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "xxx"
|
||||
elon_bot = App()
|
||||
|
||||
# Embed online resources
|
||||
elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
|
||||
elon_bot.add("https://www.forbes.com/profile/elon-musk")
|
||||
|
||||
response = elon_bot.query("What is the net worth of Elon Musk today?")
|
||||
print(response)
|
||||
# Answer: The net worth of Elon Musk today is $258.7 billion.
|
||||
```
|
||||
Reference in New Issue
Block a user