Show details for query tokens (#1392)

This commit is contained in:
Dev Khant
2024-07-05 00:10:56 +05:30
committed by GitHub
parent ea09b5f7f0
commit 4880557d51
25 changed files with 1825 additions and 517 deletions

View File

@@ -1,8 +1,8 @@
import importlib
import os
from typing import Optional
from typing import Any, Optional
from langchain_community.llms.cohere import Cohere
from langchain_cohere import ChatCohere
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
@@ -17,27 +17,50 @@ class CohereLlm(BaseLlm):
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The required dependencies for Cohere are not installed."
'Please install with `pip install --upgrade "embedchain[cohere]"`'
"Please install with `pip install langchain_cohere==1.16.0`"
) from None
super().__init__(config=config)
if not self.config.api_key and "COHERE_API_KEY" not in os.environ:
raise ValueError("Please set the COHERE_API_KEY environment variable or pass it in the config.")
def get_llm_model_answer(self, prompt):
def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]:
if self.config.system_prompt:
raise ValueError("CohereLlm does not support `system_prompt`")
return CohereLlm._get_answer(prompt=prompt, config=self.config)
if self.config.token_usage:
response, token_info = self._get_answer(prompt, self.config)
model_name = "cohere/" + self.config.model
if model_name not in self.config.model_pricing_map:
raise ValueError(
f"Model {model_name} not found in `model_prices_and_context_window.json`. \
You can disable token usage by setting `token_usage` to False."
)
total_cost = (
self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["input_tokens"]
) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info["output_tokens"]
response_token_info = {
"prompt_tokens": token_info["input_tokens"],
"completion_tokens": token_info["output_tokens"],
"total_tokens": token_info["input_tokens"] + token_info["output_tokens"],
"total_cost": round(total_cost, 10),
"cost_currency": "USD",
}
return response, response_token_info
return self._get_answer(prompt, self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
api_key = config.api_key or os.getenv("COHERE_API_KEY")
llm = Cohere(
cohere_api_key=api_key,
model=config.model,
max_tokens=config.max_tokens,
temperature=config.temperature,
p=config.top_p,
)
api_key = config.api_key or os.environ["COHERE_API_KEY"]
kwargs = {
"model_name": config.model or "command-r",
"temperature": config.temperature,
"max_tokens": config.max_tokens,
"together_api_key": api_key,
}
return llm.invoke(prompt)
chat = ChatCohere(**kwargs)
chat_response = chat.invoke(prompt)
if config.token_usage:
return chat_response.content, chat_response.response_metadata["token_count"]
return chat_response.content